

Advanced Data Science and
Analytics with Python

Chapman & Hall/CRC
Data Mining and Knowledge Series

Series Editor: Vipin Kumar

Text Mining and Visualization
Case Studies Using Open-Source Tools

Markus Hofmann and Andrew Chisholm

Graph-Based Social Media Analysis

Ioannis Pitas

Data Mining

A Tutorial-Based Primer, Second Edition

Richard J. Roiger

Data Mining with R

Learning with Case Studies, Second Edition

Luís Torgo

Social Networks with Rich Edge Semantics

Quan Zheng and David Skillicorn

Large-Scale Machine Learning in the Earth Sciences

Ashok N. Srivastava, Ramakrishna Nemani, and Karsten Steinhaeuser

Data Science and Analytics with Python

Jesús Rogel-Salazar

Feature Engineering for Machine Learning and Data Analytics

Guozhu Dong and Huan Liu

Exploratory Data Analysis Using R

Ronald K. Pearson

Human Capital Systems, Analytics, and Data Mining

Robert C. Hughes

Industrial Applications of Machine Learning

Pedro Larrañaga et al

Automated Data Analysis Using Excel

Second Edition

Brian D. Bissett

Advanced Data Science and Analytics with Python

Jesús Rogel-Salazar

For more information about this series please visit:

https://www.crcpress.com/Chapman--HallCRC-Data-Mining-and-Knowledge-Discovery-Series/book-
series/CHDAMINODIS

https://www.crcpress.com
https://www.crcpress.com

Advanced Data Science and
Analytics with Python

Jesús Rogel-Salazar

First edition published 2020
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2020 Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable e�orts have been made to publish reliable data and information, but the author and pub-
lisher cannot assume responsibility for the validity of all materials or the consequences of their use.
�e authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not been
obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or here-
after invented, including photocopying, micro�lming, and recording, or in any information storage or
retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com
or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-
750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identi�cation and explanation without intent to infringe.

ISBN: 978-0-429-44661-0 (hbk)
ISBN: 978-1-138-31506-8 (pbk)
ISBN: 978-0-429-44664-1 (ebk)

mailto:mpkbookspermissions@tandf.co.uk
http://www.copyright.com

To A. J. Johnson

Then. Now. Always.

http://taylorandfrancis.com

Contents

1 No Time to Lose: Time Series Analysis 1

1.1 Time Series 2

1.2 One at a Time: Some Examples 4

1.3 Bearing with Time: Pandas Series 7

1.3.1 Pandas Time Series in Action 18

1.3.2 Time Series Data Manipulation 21

1.4 Modelling Time Series Data 31

1.4.1 Regression. . . (Not) a Good Idea? 34

1.4.2 Moving Averages and Exponential Smoothing 36

1.4.3 Stationarity and Seasonality 39

1.4.4 Determining Stationarity 42

1.4.5 Autoregression to the Rescue 48

1.5 Autoregressive Models 51

1.6 Summary 56

viii j. rogel-salazar

2 Speaking Naturally: Text and Natural Language Processing 57

2.1 Pages and Pages: Accessing Data from the Web 59

2.1.1 Beautiful Soup in Action 64

2.2 Make Mine a Regular: Regular Expressions 77

2.2.1 Regular Expression Patterns 79

2.3 Processing Text with Unicode 88

2.4 Tokenising Text 96

2.5 Word Tagging 102

2.6 What Are You Talking About?: Topic Modelling 109

2.6.1 Latent Dirichlet Allocation 110

2.6.2 LDA in Action 115

2.7 Summary 129

3 Getting Social: Graph Theory and Social Network Analysis 131

3.1 Socialising Among Friends and Foes 132

3.2 Let’s Make a Connection: Graphs and Networks 140

3.2.1 Taking the Measure: Degree, Centrality and More 145

3.2.2 Connecting the Dots: Network Properties 149

3.3 Social Networks with Python: NetworkX 156

3.3.1 NetworkX: A Quick Intro 156

3.4 Social Network Analysis in Action 162

3.4.1 Karate Kids: Conflict and Fission in a Network 162

3.4.2 In a Galaxy Far, Far Away: Central Characters in a Network 189

advanced data science and analytics with python ix

3.5 Summary 205

4 Thinking Deeply: Neural Networks and Deep Learning 207

4.1 A Trip Down Memory Lane 208

4.2 No-Brainer: What Are Neural Networks? 214

4.2.1 Neural Network Architecture: Layers and Nodes 215

4.2.2 Firing Away: Neurons, Activate! 218

4.2.3 Going Forwards and Backwards 223

4.3 Neural Networks: From the Ground up 227

4.3.1 Going Forwards 229

4.3.2 Learning the Parameters 232

4.3.3 Backpropagation and Gradient Descent 234

4.3.4 Neural Network: A First Implementation 243

4.4 Neural Networks and Deep Learning 254

4.4.1 Convolutional Neural Networks 263

4.4.2 Convolutional Neural Networks in Action 268

4.4.3 Recurrent Neural Networks 279

4.4.4 Long Short-Term Memory 286

4.4.5 Long Short-Term Memory Networks in Action 290

4.5 Summary 300

x j. rogel-salazar

5 Here Is One I Made Earlier: Machine Learning Deployment 303

5.1 The Devil in the Detail: Data Products 304

5.2 Apples and Snakes: Core ML + Python 309

5.3 Machine Learning at the Core: Apps and ML 313

5.3.1 Environment Creation 314

5.3.2 Eeny, Meeny, Miny, Moe: Model Selection 315

5.3.3 Location, Location, Location: Exploring the Data 317

5.3.4 Modelling and Core ML: A Crucial Step 322

5.3.5 Model Properties in Core ML 329

5.4 Surprise and Delight: Build an iOS App 331

5.4.1 New Project: Xcode 332

5.4.2 Push My Buttons: Adding Functionality 344

5.4.3 Being Picky: The Picker View 347

5.4.4 Model Behaviour: Core ML + SwiftUI 350

5.5 Summary 355

A Information Criteria 359

B Power Iteration 361

C The Softmax Function and Its Derivative 363

C.1 Numerical Stability 365

advanced data science and analytics with python xi

D The Derivative of the Cross-Entropy Loss Function 367

Bibliography 369

Index 379

http://taylorandfrancis.com

List of Figures

1.1 A time series of the log returns for Apple Inc. for a year

since April 2017. 3

1.2 Solar activity from 1749 through 2013. 6

1.3 Closing prices for Apple Inc. for a year since April

2017. 7

1.4 Total of monthly visitors for the data entered

manually. 14

1.5 Open, high, low and close prices for the exchange rate

of bitcoin/USD. 31

1.6 White noise with zero mean, constant variance, and

zero correlation. 33

1.7 Closing prices for Apple Inc. for a year since April 2017

and a trend line provided by a multivariate

regression. 35

1.8 Moving averages (upper panel) and exponential

smoothing (lower panel) applied to the closing prices

for Apple Inc. 38

1.9 Analysis of the power spectrum of the sunspots data.

We can see that a maximum in activity occurs

approximately every 11 years. 42

xiv j. rogel-salazar

1.10 Sunspot activity and rolling statistics for the average

and the standard deviation. 43

1.11 Trend, seasonality and residual components for the

sunspot dataset. 46

1.12 Trend, seasonality and residual components for the

bitcoin dataset. 47

1.13 Autocorrelation and partial autocorrelation for the

sunspot dataset. 49

1.14 Autocorrelation and partial autocorrelation for the

bitcoin dataset. 50

1.15 Prediction for the sunspot activity using an ARMA(9, 0)

model. 55

2.1 A very simple webpage. 63

2.2 A preview of the Iris HTML webpage. 64

2.3 A schematic representation of HTML as a tree. We are

only showing a few of the branches. 67

2.4 A chunked sentence with two named entities. 107

2.5 Top 10 named entities in the 2009 speech made by

Barack Obama before a Joint Session of the

Congress. 109

2.6 Graphical model representation of LDA. 114

3.1 An example of a social network with directed

edges. 133

3.2 The ego network for Terry G. Only the related nodes

are highlighted and the rest are dimmed down for

clarity. 134

3.3 Transitivity in a network. 135

advanced data science and analytics with python xv

3.4 A schematic geographical representation of the seven

bridges of Königsberg and a network highlighting the

connectivity of the four land masses in

question. 136

3.5 An example graph with seven nodes, and two

sub-graphs. 142

3.6 A simple graph depicting eight nodes and five

edges. 159

3.7 Zachary’s karate club: 34 individuals at the verge of a

club split. Edges correspond to friendship relationships

among club members. 165

3.8 Degree measure of the Zachary karate club network.

The size of the nodes denotes the degree and the color

corresponds to the groups formed after the split of the

club. The darker grey nodes are Mr. Hi’s group and the

light grey ones are John A’s supporters. 170

3.9 Frequencies of the degree centrality measure for the

karate club network. 172

3.10 Degree centrality measure of Zachary’s karate club. The

size of the nodes denotes the degree centrality. We can

see the importance of not only nodes 1, 34, 33, but also

2 and 3. 173

3.11 Betweenness of Zachary’s karate club network. The size

of the nodes denotes the betweenness. We can see the

importance of nodes 1, 34, as well as 33 and 3. Node 32

is a bridge in the network. 174

xvi j. rogel-salazar

3.12 Closeness of Zachary’s karate club network. The size of

the nodes denotes the closeness. We can see the

importance of the nodes we already know about: 1, 34,

33 and 3. Node 9 is a close node in the network

too. 177

3.13 Eigenvector centrality of Zachary’s karate club network.

The size of the nodes denotes the eigenvector centrality

of the network. 178

3.14 PageRank of Zachary’s karate club network. The size of

the nodes denotes the PageRank scores of the

network. 180

3.15 Reduced network for Zachary’s karate club. We have

removed nodes 2, 3, 9 and 32 that are important for the

cohesion of the network. The size of the nodes denotes

the degree centrality of the nodes. 181

3.16 k-components of Zachary’s karate club network. 182

3.17 Some of the cliques in Zachary’s karate club

network. 183

3.18 Hierarchical clustering over Zachary’s karate club

network. 185

3.19 Communities discovered by the Girvan-Newman

algorithm on Zachary’s karate club network. Notice

that nodes 3 and 9 have been assigned to John A.’s

faction. 186

3.20 Communities discovered by the Louvain algorithm on

Zachary’s karate club network. We have four

communities denoted by different shades of

grey. 188

3.21 Star Wars network covering Episodes I-VII. Layout

inspired by the famous Death Star. 194

advanced data science and analytics with python xvii

3.22 Distribution of the degree centrality for the Star Wars

network. 195

3.23 Degree measure of the Star Wars network. The size of

the nodes denotes the degree centrality of the

node. 197

3.24 Eigenvector centrality for the Star Wars network. The

size of the nodes denotes the eigenvector centrality of

the node. 200

3.25 PageRange for the nodes in the Star Wars network. The

size of the nodes denotes the PageRank score for the

node. 200

3.26 Vader networks for the following centrality measures:

Degree centrality, eigenvector centrality, PageRank and

betweenness. 201

3.27 Star Wars sides (communities) obtained with the

application of the Girvan-Newman algorithms. 204

4.1 Neural network architecture with a single hidden

layer. 213

4.2 An artificial neural network takes up an input and

combines the contributions of the nodes to calculate an

output ŷ with the aid of a nonlinear function with the

sum of its inputs. 214

4.3 Neural network architecture with a single hidden layer,

including bias. The inputs to a node (marked in gray)

are used in conjunction with the weights wi to calculate

the output with the help of the activation function

f (·). 219

4.4 Zooming into one of the hidden nodes in our neural

network architecture. 220

xviii j. rogel-salazar

4.5 Some common activation functions, including sigmoid,

tanh and ReLU. 221

4.6 A plot of the softmax function. 222

4.7 Backward propagation of errors, or backpropagation,

enables the neural network to learn from its

mistakes. 225

4.8 General architecture of a neural network; we are

showing the labels of the different L layers in the

network. 232

4.9 The derivative of a function f indicates the rate of

change at a given point. This information lets us change

our parameters accordingly. 235

4.10 Observations corresponding to two classes, 0 and 1,

described by features x1 and x2. We will use this data to

train a neural network. 244

4.11 Classification boundary obtained with a 3-node hidden

layer neural network. The discrimination is modelled

well with a cubic-like function. 250

4.12 Classification boundaries for a neural network with one

hidden layer comprising 1, 2, 3, 10, 30 and 50 hidden

nodes. 253

4.13 Classification boundary obtained with a sequential

model for a neural network implemented in

Keras. 261

4.14 An image of a letter J (on the left). After applying an

identity kernel the result is a scaled down version of the

image (on the right). 264

4.15 An image of a Jackalope icon (on the left). After

applying a sharpening filter, we obtain the image on the

right. 265

advanced data science and analytics with python xix

4.16 Architecture of a convolutional neural network. 268

4.17 Example images for each of the ten classes in the

CIFAR-10 dataset. The pixelation is the result of the

images being 32 × 32. 269

4.18 A picture of a nice feline friend to test our

convolutional neural network. 278

4.19 A diagrammatic representation of the architecture of a

recurrent neural network. 281

4.20 The inner workings of a long short-term memory

neural network. 287

5.1 We follow this workflow to deploy our machine

learning models to our app. 314

5.2 A line of best bit for the observations y dependent of

features x1. 317

5.3 Boston house prices versus average number of rooms

(top) and per capita crime rate (bottom). 321

5.4 Visualisation of the Boston house price model

converted into Core ML format. 328

5.5 Properties of the Boston Pricer Core ML model created

from Scikit-learn. 330

5.6 Creating a new XCode project for a Single View

App. 332

5.7 We need to provide some metadata for the project we

are creating. 333

5.8 The LaunchScreen.storyboard element is the main

interface presented to our users. 334

5.9 Open the Library with the plus icon, and the Object

Library with the icon that looks like a square inside a

circle. 335

xx j. rogel-salazar

5.10 Drag and drop your image into the Assets.xcassets

folder. 336

5.11 Select your image in the Attribute Inspector. 337

5.12 Auto layout errors. 337

5.13 Let us centre the image vertically and

horizontally. 337

5.14 We can put constraints on the height, width and aspect

ratio of our image. 338

5.15 We can edit the added contraints for width and aspect

ratio. 339

5.16 We are now adding constraints to one of the

labels. 340

5.17 Running our app up until this point will show the

splash page created, followed by the “Hello Word”

message shown in all its glory. 341

5.18 The autogenerated code that prints “Hello World” to

the screen can be found in the ContentView.Swift file.

342

5.19 The attributes can be changed in the preview. 343

5.20 The app layout is automatically handled with SwiftUI.

344

5.21 The app state after pressing the button. 347

5.22 Adding a couple of pickers to our app. 348

5.23 The pickers are now showing the correct values we

specified. 349

5.24 We can see that the app is capturing the correct state for

the pickers. 350

5.25 Adding a New Group to our project. 351

5.26 Adding resources to our Xcode project. 351

advanced data science and analytics with python xxi

5.27 The final app producing predictions for our users out of

a linear regression model first developed with

Python. 354

http://taylorandfrancis.com

List of Tables

1.1 Offset aliases used by Pandas to represent common

time series frequencies. 15

1.2 Descriptive statistics for the data entered manually. We

are not including the count in this table. 16

1.3 Some format directives for the strftime method. 17

1.4 Parameters specifying the decay applied to an

exponential smoothing calculation with ewm. 38

2.1 Common HTML tags. 61

2.2 Regular expression patterns. We use ellipses (...) to

denote sequences of characters. 80

3.1 Character rankings for the most central characters in

the Star Wars saga given by various centrality

measures. 202

4.1 Capabilities of neural networks with a different number

of hidden layers. 217

5.1 Models and frameworks supported by Core

ML. 312

http://taylorandfrancis.com

Preface

Writing a book is an exhilarating experience, if at times

a bit hard and maddening. This companion to Data Science

and Analytics with Python1 is the result of arguments with 1 Rogel-Salazar, J. (2017). Data
Science and Analytics with Python.
Chapman & Hall/CRC Data
Mining and Knowledge Discovery
Series. CRC Press

myself about writing something to cover a few of the areas

that were not included in that first volume, largely due to

space/time constraints. Like the previous book, this one

exists thanks to the discussions, stand-ups, brainstorms and

eventual implementations of algorithms and data science

projects carried out with many colleagues and friends. The

satisfaction of seeing happy users/customers with products

they can rely on is, and will continue to be, a motivation for

me.

The subjects discussed in this book are complementary and

a follow-up to the ones covered in Volume 1. The intended

audience for this book is still composed of data analysts and

early-career data scientists with some experience in

programming and with a background in statistical

modelling. In this case, however, the expectation is that they
The book and its companion are

a good reference for seasoned

practitioners too.
have already covered some areas of machine learning and

data analytics. Although I will refer to the previous book in

xxvi j. rogel-salazar

parts where some knowledge is assumed, the book is

written to be read independently from Volume 1. As the

title suggests, this book continues to use Python2 as a tool to 2 Python Software Foundation
(1995). Python reference manual.
http://www.python.orgtrain, test and implement machine learning models and

algorithms. Nonetheless, Python does not live in isolation,

and in the last chapter of this book we touch upon the usage

of Swift3 as a programming language to help us deploy our 3 Apple Inc. (2014). Swift
programming language.
https://swift.orgmachine learning models.

Python continues to be, in my view, a very useful tool.

The number of modules, packages and contributions that

Pythonistas have made to the rest of the community make

it a worthwhile programming language to learn. It is no

surprise that the number of Python users continues to grow.

Similarly, the ecosystem of the language is also evolving:

From the efforts to bring Python 3.x to be the version of Visit https://jupyterlab.

readthedocs.io for further

information.
choice, through to the development of the computational

environment that is the Jupyter Notebook and its evolution,

the JupyterLab.

For those reasons, we will continue using some excellent

libraries, such as Scikit-learn4, Pandas5, Numpy6 and others. 4 Pedregosa, F., G. Varoquaux,
A. Gramfort, V. Michel, et al.
(2011). Scikit-learn: Machine
learning in Python. Journal of
Machine Learning Research 12,
2825–2830
5 McKinney, W. (2012). Python
for Data Analysis: Data Wrangling
with Pandas, NumPy, and IPython.
O’Reilly Media
6 Scientific Computing Tools
for Python (2013). NumPy.
http://www.numpy.org

After all, we have seen Nobel prize winning research being

supported by Python, as have been a number of commercial

enterprises, including consultancies, startups and

established companies. The decision to use Python for this

second volume is therefore not just one of convenience and

continuity, but a conscious adoption that I hope will support

you too.

https://jupyterlab.readthedocs.io
http://www.numpy.org
https://jupyterlab.readthedocs.io
https://swift.org
http://www.python.org

advanced data science and analytics with python xxvii

As I mentioned above, the book covers aspects that were

necessarily left out in the previous volume; however, the

readers in mind are still technical people interested in

moving into the data science and analytics world. I have

tried to keep the same tone as in the first book, peppering

the pages with some bits and bobs of popular culture,

science fiction and indeed Monty Python puns. The aim I sincerely hope the most obscure

ones do make you revisit their

excellent work.
is still to focus on showing the concepts and ideas behind

popular algorithms and their use. As before, we are not

delving, in general, into exhaustive implementations from

scratch, and instead relying on existing modules.

The examples contained here have been tested in Python 3.7

under MacOS, Linux and Windows 10. We do recommend

that you move on from Python 2. For reference, the versions Maintenance for Python 2 has

stopped as of January 2020.of some of the packages used in the book are as follows:

Python - 3.5.2 Pandas - 0.25

NumPy - 1.17.2 Scikit-learn - 0.21

SciPy - 1.3.1 StatsModels - 0.10

BeautifulSoup - 4.8.1 NLTK - 3.4.5

NetworkX - 2.4 Keras - 2.2.4

TensorFlow - 1.14.0

As before, I am using the Anaconda Python distribution7 7 Continuum Analytics (2014).
Anaconda 2.1.0. https://store.

continuum.io/cshop/anaconda/provided by Continuum Analytics. Remember that there are

other ways of obtaining Python as well as other versions of

https://store.continuum.io
https://store.continuum.io

xxviii j. rogel-salazar

the software: For instance, directly from the Python

Software Foundation, as well as distributions from Python Software Foundation

https://www.python.orgEnthought Canopy, or from package managers such as

Enthought Canopy https://www.

enthought.com/products/epd/

Homebrew. In Chapters 4 and 5, we create conda

Homebrew http://brew.sh

environments to install and maintain software relevant to

the discussions for those chapters, and you are more than

welcome to use other virtual environment maintainers too.

We show computer code by enclosing it in a box as follows:

> 1 + 1 # Example of computer code

2

We use a diple (>) to denote the command line terminal

prompt shown in the Python shell. Keeping to the look

and feel of the previous book, we use margin notes, such

as the one that appears to the right of this paragraph, to This is an example of the margin

notes used throughout this book.highlight certain areas or commands, as well as to provide

some useful comments and remarks.

As mentioned before, the book can be read independently

from the previous volume, and indeed each chapter is as

self-contained as possible. I would also like to remind you

that writing code is not very dissimilar to writing poetry. I hope Sor Juana would forgive

my comparison.If I asked that each of us write a poem about the beauty of

a Jackalope, we would all come up with something. Some

would write odes to Jackalopes that would be remembered

by generations to come; some of us would complete the task

with a couple of rhymes. In that way, the code presented

here may not be award winning poetry, but the aim, I hope,

https://www.enthought.com
http://brew.sh
https://www.enthought.com
https://www.python.org

advanced data science and analytics with python xxix

will be met. I would welcome to hear about your poems. Do

get in touch!

We start in Chapter 1 with a discussion about time series Time series data and analysis is

covered in Chapter 1.data. We see how Pandas has us covered to deal with the

fiendish matter of date data types. We learn how to use

time series data similar to that found in stock markets

and see how Pandas lets us carry out resampling, slicing

and dicing, filtering, aggregating and plotting this kind

of data. In terms of modelling, in this chapter we see how

moving averages and exponential smoothing let us get

a first approach at forecasting future values of the series

based on previous observations. We look at autoregression

and see how it can be used to model time series.

In Chapter 2, we take a look at processing text data Natural language processing is

covered in Chapter 2.containing natural language. We look at how we can obtain

data from the web and scrape data that otherwise would be

out of reach to us. We take a look at the use of regular

expressions to capture specific patterns in a piece of text

and learn how to deal with Unicode. Looking at text data in

this way leads us to the analysis of language, culminating

with topic modelling as an unsupervised learning task to

identify the possible subjects or topics that are addressed in

a set of documents.

In Chapter 3, we look into some fundamental concepts used Chapter 3 covers the use of graphs

and network analysis, a topic

that will inevitably make us more

social.

in the analysis of networks, whether social or otherwise.

We look at graph theory as a way to discover relationships

encoded in networks such as small-world ones. We have

a chance to talk about measures such as degree centrality,

xxx j. rogel-salazar

closeness, betweenness, and others. We even do this with

characters from a galaxy far, far away. :)

Chapter 4 is probably the deepest chapter of all, pun

definitely intended. It is here where we turn our attention to Chapter 4 looks at neural

networks and deep learning.the “unreasonable effectiveness” of neural networks. We

look at the general architecture of a neural network and

build our own from scratch. Starting with feedforward

networks, we move on to understand the famous

backpropagation algorithm. We get a chance to look at the

effect of the number of layers as well as the number of

nodes in each of them. We then move on to the

implementation of more complex, deeper architectures, such

as convolutional and recurrent neural networks.

Finally, in Chapter 5, we look at the perennial issue of Chapter 5 looks at the deployment

of machine learning models.bringing our models, predictions and solutions to our

customers, users and stakeholders. Data products are the

focus of our discussion, and we see how the availability,

processing, meaning and understanding of data should be

at the heart of our efforts. We then look at the possibility of

bringing our models to the hands of our users via the

implementation of a model inside a mobile device

application in an Apple device such as an iPhone via Core

ML.

Remember that there is no such thing as a perfect model, only

good enough ones. The techniques presented in this book,

and the companion volume, are not the end of the story,

they are the beginning. The data that you have to deal

with will guide your story. Do not let the anthropomorphic

advanced data science and analytics with python xxxi

language of machine learning fool you. Models that learn,

see, understand and recognise are as good as the data used to

build them, and as blind as the human making decisions

based on them. Use your Jackalope data science skills to

inform your work.

As I said before, this book is the product of many

interactions over many moons. I am indebted to many

people that have directly and indirectly influenced the You know who you are!

words you have before you. Any errors, omissions or

simplifications are mine. As always, I am grateful to my

family and friends for putting up with me when I excuse

myself with the old phrase:“I have to do some book... I am Do some work on the book of

course...behind”. Thank you for putting up with another small project

from this crazy physicist!

London, UK Dr Jesús Rogel-Salazar

March 2020

http://taylorandfrancis.com

Reader’s Guide

This book is intended to be a companion to any

Jackalope data scientist that is interested in continuing the

journey following the subjects covered in Data Science and

Analytics with Python8. The material covered here is fairly 8 Rogel-Salazar, J. (2017). Data
Science and Analytics with Python.
Chapman & Hall/CRC Data
Mining and Knowledge Discovery
Series. CRC Press

independent from the book mentioned above though.

The chapters in this book can be read on their own and in

any order you desire. If you require some direction though,

here is a guide that may help in reading and/or consulting

the book:

• Managers and readers curious about Data Science:

– Take a look at the discussion about data products in

Chapter 5. This will give you some perspective of

the areas that your Jackalope data scientists need to

consider in their day-to-day work.

– I recommend you also take a look at Chapters 1 and 3

of the companion book mentioned above.

– Make sure you understand those chapters inside-

out; they will help you understand your rangale of

Jackalope data scientists.

xxxiv j. rogel-salazar

• Beginners:

– Start with Chapters 2 and 3 of the companion book.

They will give you a solid background to tackle the

rest of this book.

– Chapter 1 of this book provides a good way to

continue learning about the capabilities of Pandas.

– Chapter 2 of this book on natural language processing

will give you a balanced combination of powerful tools,

with an easy entry level.

• Seasoned readers and those who have covered the first

volume of this series may find it easier to navigate the

book by themes or subjects:

– Time Series Data is covered in Chapter 1, including:

* Handling of date data

* Time series modelling

* Moving averages

* Seasonality

* Autoregression

– Natural Language Processing is covered in Chapter 2,

including:

* Text data analysis

* Web and HTML scraping

* Regular expressions

* Unicode encoding

* Text tokenisation and word tagging

* Topic modelling

advanced data science and analytics with python xxxv

– Network Analysis is discussed in Chapter 3,

including:

* Graph theory

* Centrality measures

* Community detection and clustering

* Network representation

– Neural networks and Deep Learning is addressed in

Chapter 4, where we look at:

* Neural network architecture

* Perceptron

* Activation functions

* Feedforward networks

* Backpropagation

* Deep learning

* Convolutional neural networks

* Recurrent neural networks

* LSTM

– Model Deployment and iOS App Creation is covered

in Chapter 5, including:

* Data products

* Agile methodology

* App design

* Swift programming language

* App deployment

http://taylorandfrancis.com

About the Author

Dr Jesús Rogel-Salazar is a lead data scientist with

experience in the field working for companies such as

AKQA, IBM Data Science Studio, Dow Jones, Barclays and

Tympa Health Technologies. He is a visiting researcher at

the Department of Physics at Imperial College London,

UK and a member of the School of Physics, Astronomy

and Mathematics at the University of Hertfordshire, UK.

He obtained his doctorate in Physics at Imperial College

London for work on quantum atom optics and ultra-cold

matter.

He has held a position as senior lecturer in mathematics,

as well as a consultant and data scientist, for a number of

years in a variety of industries, including science, finance,

marketing, people analytics and health, among others. He

is the author of Data Science and Analytics with Python and

Essential MATLAB® and Octave, both also published by CRC

Press. His interests include mathematical modelling, data

science and optimisation in a wide range of applications,

including optics, quantum mechanics, data journalism,

finance and health.

http://taylorandfrancis.com

Other Books by the Same Author

• Data Science and Analytics with Python

CRC Press, 2018, ISBN 978-1-138-04317-6 (hardback)

978-1-4987-4209-2 (paperback)

Data Science and Analytics with Python is designed for

practitioners in data science and data analytics in both

academic and business environments. The aim is to

present the reader with the main concepts used in data

science using tools developed in Python. The book

discusses what data science and analytics are, from the

point of view of the process and results obtained.

• Essential MATLAB® and Octave

CRC Press, 2014, ISBN 978-1-138-41311-5 (hardback)

978-1-4822-3463-3 (paperback)

Widely used by scientists and engineers, well-established

MATLAB® and open-source Octave provide excellent

capabilities for data analysis, visualisation, and more.

By means of straightforward explanations and examples

from different areas in mathematics, engineering, finance,

and physics, the book explains how MATLAB and Octave

are powerful tools applicable to a variety of problems.

http://taylorandfrancis.com

1

No Time to Lose: Time Series Analysis

Have you ever wondered what the weather, financial

prices, home energy usage, and your weight all have in

common? Well, appart from the obvious, the data to analyse
Not obvious? Oh... well, read on!

these phenomena can be collected at regular intervals over

time. Common sense, right? Well, there is no time to lose;
Or is it Toulouse, like “Toulouse”

in France?

let us take a deeper look into this exciting kind of data. Are

you ready?

A time series is defined as a sequence of data reading in

successive order and can be taken on any variable that

changes over time. So, if a time series is a set of data

collected over time, then a lot of things, not just our weight

or the weather, would be classed as time series, and perhaps A lot of data is collected over time,

but that does not make the data

set a time series.
that is true. There are, obviously and quite literally, millions

of data points that can be collected over time. However, time

series analysis is not necessarily immediately employed.

Time series analysis encapsulates the methods used to

understand the sequence of data points mentioned above

2 j. rogel-salazar

and extract useful information from it. A main goal is that

of forecasting successive future values of the series. In this

chapter we will cover some of these methods. Let us take a

look.

1.1 Time Series

Knowing how to model time series is surely an

important tool in our Jackalope data scientist toolbox.

Jackalopes? Yes! Long story... You can get further

information in Chapter 1 of Data Science and Analytics with

Python.1. But I digress, the key point about time series data 1 Rogel-Salazar, J. (2017). Data
Science and Analytics with Python.
Chapman & Hall/CRC Data
Mining and Knowledge Discovery
Series. CRC Press

is that the ordering of the data points in time matters. For

many datasets it is not important in which order the data

See for instance the datasets

analysed in the book mentioned

above.

are obtained or listed. One order is as good as another, and

although the ordering may tell us something about the

dataset, it is not an inherent attribute of the set.

However, for time series data the ordering is absolutely

crucial. The order imposes a certain structure on the data, What is different about time

series? —Time!which in turn is of relevance to the underlying phenomenon

studied. So, what is different about time series? Well, Time!

Furthermore, we will see later on in this chapter that in

some cases there are situations where future observations

are influenced by past data points. All in all, this is not a

surprising statement; we are well acquainted with causality

relationships.

Let us have a look at an example of a time series. In Figure

1.1 we can see a financial time series corresponding to the

advanced data science and analytics with python 3

2017-05
2017-07

2017-09
2017-11

2018-01
2018-03

2018-05

Date

0.04

0.02

0.00

0.02

0.04
lo

g
Re

tu
rn

s

Figure 1.1: A time series of the log
returns for Apple Inc. for a year
since April 2017.

log returns of Apple for a year starting in April 2017. The

log returns are used to determine the proportional amount

The log return is given by

log
(

FV
PV

)

, where FV is the future

value and PV is the past value.

you might get on a given day compared to the previous

one. With that description in mind, we can see how we are

relating the value on day n to the one on day n − 1.

In that way, a Jackalope data scientist working in finance

may be able to look at the sequence provided by the time

series to determine a model that can predict what the next

value will be. The same train of thought will be applicable And hop all the way to the bank...

to a variety of other human endeavours, from agriculture to

climate change, and from geology to solar dynamics.

In contrast, in many other cases the implicit assumption we

may be able to make is that the observations we take are not

a sequence and that the values obtained are independent

from each other. Let us consider the Iris dataset that we

have used in Chapter 3 of Data Science and Analytics with

4 j. rogel-salazar

Python2. The dataset records measurements of three species 2 Rogel-Salazar, J. (2017). Data
Science and Analytics with Python.
Chapman & Hall/CRC Data
Mining and Knowledge Discovery
Series. CRC Press

of iris flowers in centimetres, including sepal length, sepal

width, petal length and petal width. In collecting the

information, there is no reason to believe that the fact the

current iris specimen we measure has a petal length of, say,

6.1 cm tells us anything about the next specimen.

In a time series the opposite is true, i.e., whatever happens

at time t has information about what will happen at t + 1. In

that sense, our observations of the phenomenon at hand are
t has information about what will

happen at t + 1.

at the same time both outcomes and predictors: Outcomes

of the previous time step, and predictors of the next one. I

know what you are thinking—cool!!— and now how do we Isn’t it cool to be able to use

interrobangs!?!?deal with that situation!?!?

You will be happy (although not surprised perhaps) that

there is an answer: There are various ways to deal with this

input/output duality and the appropriate methodology

very much depends on what I call the personality of the data, I think data, like humans, has also

some personality .i.e. the nature of the data itself, how it was obtained and

what answers we require from it. In this chapter we shall

see some of the ways we can analyse time series data. Let us

start with a few examples.

1.2 One at a Time: Some Examples

In the previous section we have seen a first example

of a time series given by the log returns of Apple (shown in

Figure 1.1). We can clearly see a first maximum on August

2nd, 2017. This corresponds to the day Apple released

advanced data science and analytics with python 5

their third-quarter results for 2017, beating earning and

revenue estimates3. There are several other peaks and 3 Archer, S. (2017). Apple
hits a record high after
crushing earnings (AAPL).
http://markets.businessinsider.com
/news/stocks/apple-stock-price-
record-high-after-crushing-
earnings -2017-8-100222647.
Accessed: 2018-05-01

troughs during the year of data plotted. These are not

uncommon in many financial time series, and not all may

have a straightforward explanation like the one above.

Another interesting thing we can notice is that if we were to

take the average of the values in the series, we can see that it

is a fairly stable measure. Nonetheless, the variability of the An average return of

approximately zero!data points changes as we move forwards in time. We shall

see later on some models that will exploit these observations

to analyse this type of data.

Let us see another example from a very different area: Solar

dynamics. In Figure 1.2 we can see the number of sunspots

per month since 1749 through 2013. The earliest study

of the periodicity of sunspots was the work by Schuster4 4 Schuster, A. (1906). II. On
the periodicities of sunspots.
Philosophical Transactions of
the Royal Society of London
A: Mathematical, Physical and
Engineering Sciences 206(402-412),
69–100

in 1906. Schuster is credited with coining the concept of

antimatter, and as cool as that is, in this case we would like

to concentrate on the periodogram analysis he pioneered to

establish an approximate 11-year cycle in the solar activity.

Sunspots indicate intensive magnetic activity in the sun, and

we can see in the figure the regular appearance of maximum

and minimum activity. Understanding the behaviour of

sunspots is important due to their link with solar activity Sunspots are linked to solar

activity, enabling us to carry out

space weather predictions.
and help us predict space weather that affects satellite

communication and also provides us with awe-inspiring

and spectacular auroras.

If our goal is indeed to generate predictions from the data

in a time series, there are certain assumptions that can help

http://markets.businessinsider.com
http://markets.businessinsider.com
http://markets.businessinsider.com
http://markets.businessinsider.com

6 j. rogel-salazar

1760 1780 1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000
Year

0

50

100

150

200

250
Nu

m
. o

f S
un

 sp
ot

s

Figure 1.2: Solar activity from 1749

through 2013.
us in our quest. A typical assumption made is that there

is some structure in the time series data. This structure

may be somewhat obfuscated by random noise. One way Structure = Trend + Seasonality

to understand the structure of the time series is to think of

the trend shown in the series together with any seasonal

variation.

The trend in the Apple log returns discussed earlier on

may not be very obvious. Let us take a look at the closing

price of the Apple stock during the same period. In Figure

1.3 we can see the behaviour of the closing price for a year

since 2017. The plot shows that there is a tendency for the Trend, it should be said!

prices to increase overtime. Similarly, there seem to be some

periodicity in the data.

This brings us to the seasonality in a time series. Seasonality

is understood in this case to be the presence of variations

advanced data science and analytics with python 7

2017-06
2017-08

2017-10
2017-12

2018-02
2018-04

Date

145

150

155

160

165

170

175

180
Cl

os
in

g
Pr

ice

Figure 1.3: Closing prices for
Apple Inc. for a year since April
2017.observed at regular intervals in our data set. These intervals

may be daily, weekly, monthly, etc. Seasonal variation may

be an important source of information in our quest for
Seasonality is the presence of

variations at regular intervals.
predictability as it captures information that will clearly

have an impact on the events you are measuring with your

data. The seasonality in the sunspot activity shown in

Figure 1.2 is undeniable.

1.3 Bearing with Time: Pandas Series

Now that we have a better idea of what makes a time

series dataset different from other types of data, let us

consider how we can deal and manipulate them in a way

that makes life easier for us Jackalope data scientists. I am

sure that you have come across the great and useful Python

8 j. rogel-salazar

module called Pandas. Its original author, Wes McKinney

started developing the module to deal with panel data,

encountered in statistics and econometrics5. Indeed he 5 McKinney, W. (2011). pandas:
a foundational python library
for data analysis and statistics.
Python for High Performance and
Scientific Computing: O’Reilly
Media, Inc

started using Python to perform quantitative analysis on

financial data at AQR Capital Management. Today, Pandas

is a well-established open source piece of software with

multiple uses and a large number of contributors.

Since time is an important part of a time series, let us take a

look at some data that contains time as one of its columns. A hint is in the name...

We can start by loading some useful modules including

Pandas and datetime:

import numpy as np

import pandas as pd

from datetime import datetime

We can create a dictionary with some sample data:

We are creating a dataframe with

two columns: Date and visitors.

Each column is given as a list.

data = {’date’: [’2018-01-01’, ’2018-02-01’,

’2018-03-01’, ’2018-04-01’,

’2018-05-01’, ’2018-06-01’,

’2018-01-01’, ’2018-02-01’,

’2018-03-01’, ’2018-04-01’,

’2018-05-01’, ’2018-06-01’],

’visitors’: [35, 30, 82, 26,

83, 46, 40, 57, 95, 57, 87, 42]}

We have visitor monthly data for January through June 2018. The date is given in the format

’YYYY-MM-DD’.The date is given in a format where the year comes first,

followed by the month and the day. This dictionary can be

readily converted into a Pandas dataframe as follows:

advanced data science and analytics with python 9

df = pd.DataFrame(data,

columns=[’date’, ’visitors’])

Let us take a look at the data:

As expected, we have a dataframe

with two columns.

> df.head()

date visitors

0 2018-01-01 35

1 2018-02-01 30

2 2018-03-01 82

3 2018-04-01 26

4 2018-05-01 83

Notice that when looking at the dataset, the rows have been

given a number (starting with 0). This is an index for the A very Pythonic way of counting.

dataframe. Let us take a look at the types of the columns in

this dataframe:

The type for date is object,

whereas for visitors is integer.

> df.dtypes

date object

visitors int64

dtype: object

The visitors column is of integer type, but the date

column is shown to be an object. We know that this is a date

and it would be preferable to use a more relevant type. We

can change the column with the to_datetime method in a

Pandas dataframe:

10 j. rogel-salazar

df[’date’] = pd.to_datetime(df[’date’])

Furthermore, since the date provides an order sequence for

We can use the to_datetime

method to convert Pandas

columns into date objects.

our data, we can do a couple of useful things. First we can

set the index to be given by the date column, and second,

we can order the dataframe by this index:

We set an index and sort the

dataframe by that index.

df.set_index(’date’, inplace=True)

df.sort_index(inplace=True)

We have used the inplace property for both commands

above. This property lets us make changes to the dataframe

in-situ, otherwise we would have to create a new dataframe

object. Let us look at the head of our dataset:

The inplace property lets us make

changes directly to the dataframe.

Otherwise, we would need to

make copies of it to apply the

changes.

> df.head()

visitors

date

2018-01-01 35

2018-01-01 40

2018-02-01 30

2018-02-01 57

2018-03-01 82

As we can see in the code above, the rows of the dataset

have been ordered by the date index. We can now apply

some slicing and dicing to our dataframe. For instance, we

can look at the visitors for the year 2018:

advanced data science and analytics with python 11

df[’2018’]

What about if we were interested in the visitors for May,

In this case this would correspond

to all our data points.

2018? Well, that is easy:

> df[’2018-05’]

visitors

date

2018-05-01 83

2018-05-01 87

Other slicing and dicing techniques used in collection

Here we are filtering for the

visitors in May, 2018.

objects are possible thanks to the use of the colon notation.

For instance, we can request all the data from March, 2018

onwards as follows:

The colon notation used in other

collection objects in Python works

for Pandas time series too.

> df[datetime(2018, 3, 1):]

visitors

date

2018-03-01 82

2018-03-01 95

2018-04-01 26

2018-04-01 57

2018-05-01 83

2018-05-01 87

2018-06-01 46

2018-06-01 42

12 j. rogel-salazar

The truncate method can help us keep all the data points

before or after a given date. In this case, let us ask for the

data up to March 2018:

> df.truncate(after=’2018-03-01’)

visitors

date

2018-01-01 35

2018-01-01 40

2018-02-01 30

2018-02-01 57

2018-03-01 82

2018-03-01 95

Had we used the before parameter instead, we could have

We can truncate the time series

with the truncate method.

truncated all the data points before March, 2018 instead.

We can use Pandas to provide us with useful statistics for

our dataset. For example, we can count the number of

datapoints per entry in the index:

We can calculate aggregations

with the help of groupby. In this

case we are interested in the

count.

> df.groupby(’date’).count()

visitors

date

2018-01-01 2

2018-02-01 2

2018-03-01 2

2018-04-01 2

2018-05-01 2

2018-06-01 2

advanced data science and analytics with python 13

As expected, we have two entries for each date. We can also

look at statistics such as the mean and the sum of entries.

In this case, we are going to use the resample method for a The resample method lets us

change the frequency in our

dataset.
series. In effect this enables us to change the time frequency

in our dataset. Let us use the ’M’ offset alias to tell Pandas to

create monthly statistics. For the mean we have:

We can calculate the mean.

> df.resample(’M’).mean()

visitors

date

2018-01-31 37.5

2018-02-28 43.5

2018-03-31 88.5

2018-04-30 41.5

2018-05-31 85.0

2018-06-30 44.0

Similarly, for the sum we have:

And the sum too.

> df.resample(’M’).sum()

visitors

date

2018-01-31 75

2018-02-28 87

2018-03-31 177

2018-04-30 83

2018-05-31 170

2018-06-30 88

14 j. rogel-salazar

An offset alias, such as ’M’ used in the code above is a Offset aliases are listed in Table

1.1.string that represents a common time series frequency. We

can see some of these aliases in Table 1.1.

We can even create a plot of the dataset. In this case, we

show in Figure 1.4 the monthly sum of visitors for the

dataset in question.

Jan
2018

Feb Mar Apr May Jun

Date

80

100

120

140

160

180 visitors

Figure 1.4: Total of monthly
visitors for the data entered
manually.It is possible to obtain descriptive statistics with the use of

the describe method, and we can do so per relevant group.

For example, we can request the information for each date

in the dataset:

advanced data science and analytics with python 15

Alias Description

B business day frequency
C custom business day frequency
D calendar day frequency
W weekly frequency
M month-end frequency

SM
semi-month-end frequency (15th and end of
month)

BM business month-end frequency
CBM custom business month-end frequency
MS month-start frequency
SMS semi-month-start frequency (1st and 15th)
BMS business month start frequency
CBMS custom business month-start frequency
Q quarter-end frequency
BQ business quarter-end frequency
QS quarter start frequency
BQS business quarter-start frequency
A, Y year-end frequency
BA, BY business year-end frequency
AS, YS year-start frequency
BAS, BYS business year-start frequency
BH business hour frequency
H hourly frequency
T, min minutely frequency
S secondly frequency
L, ms milliseconds
U, us microseconds
N nanoseconds

Table 1.1: Offset aliases used by
Pandas to represent common time
series frequencies.

16 j. rogel-salazar

df.groupby(’date’).describe()

In Table 1.2 we see the descriptive statistics for the data

entered manually earlier on. For brevity we have decided

not to include the count column.

Visitors

mean std min 25% 50% 75% max

date

2018-01-01 37.5 3.53 35.0 36.25 37.5 38.75 40.0
2018-03-01 88.5 9.19 82.0 85.25 88.5 91.75 95.0
2018-04-01 41.5 21.92 26.0 33.75 41.5 49.25 57.0
2018-05-01 85.0 2.82 83.0 84.00 85.0 86.00 87.0
2018-06-01 44.0 2.82 42.0 43.00 44.0 45.00 46.0

Table 1.2: Descriptive statistics for
the data entered manually. We
are not including the count in this
table.

Given that date and time are important components of a

time series, Pandas has some neat tricks to help us deal with

them. For example, it is possible to use date formats such as

that shown above, i.e., ’YYYY-MM-DD’. We can also provide We can provide a data in plain

natural language, and convert it to

a date type.
a date in other formats, for instance consider the following

code:

> date = pd.to_datetime("14th of October, 2016")

> print(date)

Timestamp(’2016-10-14 00:00:00’)

We have successfully transformed a date given in natural

language to a time stamp. We can also do the opposite; in How cool is that!?

other words, we can obtain a string of the time stamp to tell

advanced data science and analytics with python 17

Directive Meaning

%a abbreviated weekday name
%A full weekday name
%b abbreviated month name
%B full month name
%c preferred date and time representation
%d day of the month (1 to 31)
%D same as %m/%d/%y
%e day of the month (1 to 31)
%m month (1 to 12)
%M minute
%S second
%u weekday as a number (Mon=1 to 7)

Table 1.3: Some format directives
for the strftime method.

us the weekday, month, day, etc. We can do this thanks to

the strftime method together with a format directive. Some strftime lets us obtain a string

out of the time stamp.format directives for strftime are listed in Table 1.3. Let

us take a look at extracting the full weekday name (%A), the

name of the month (%B) and the weekday number (%u).

> date.strftime(’%A’)

’Friday’

> date.strftime(’%B’)

’October’

> date.strftime(’%u’)

’5’

18 j. rogel-salazar

1.3.1 Pandas Time Series in Action

In some cases we may need to create time series data from

scratch. In this section we are going to explore some of the

ways in which Pandas enables us to create and manipulate

time series data on top of the commands we have discussed

up until this point.

The first thing to take care of is the time ranges required for We can determine a time range by

specifying start and end times.our data set. For example, we can ask Pandas to create a

series of dates with date_range:

> pd.date_range(’2018-05-30’, ’2018-06-02’)

DatetimeIndex([’2018-05-30’, ’2018-05-31’,

’2018-06-01’, ’2018-06-02’],

dtype=’datetime64[ns]’, freq=’D’)

Note that the output of the command above is an index

covering the time range requested with a daily frequency, as

Recall the time offset aliases

shown in Table 1.1.

shown in the output with freq=‘D‘.

An alternative to the above command is to provide a start Alternatively, we can provide

a start time and a number of

periods.
date, but instead of giving an end date, we request a

number of “periods” to cover with the time series:

> pd.date_range(’2018-05-30’, periods=4)

DatetimeIndex([’2018-05-30’, ’2018-05-31’,

’2018-06-01’, ’2018-06-02’],

dtype=’datetime64[ns]’, freq=’D’)

advanced data science and analytics with python 19

This hints to the fact that we can provide a number of

periods to cover, as well as the frequency we require. For

example, we can request for four monthly periods:

Here we provide a start time,

a number of periods and the

frequency for those periods.

> pd.date_range(’2018-05-30’, periods=4, freq=’M’)

DatetimeIndex([’2018-05-31’, ’2018-06-30’,

’2018-07-31’, ’2018-08-31’],

dtype=’datetime64[ns]’, freq=’M’)

As you can see, all we had to do was specify the monthly

frequency with freq=’M’.

Let us construct a more complicated dataset: For a period

of four days starting on June 4, 2018; we take readings for

four features called A, B, C and D. In this case we will

generate the readings with a random number sampled

from a standard normal distribution. Let us create some

The random number can be

obtained with the method

random.randn from numpy.

definitions:

from numpy.random import randn

idx = pd.date_range(’2018-06-04 00:00:00’,

periods=4)

cols = [’A’, ’B’, ’C’, ’D’]

We will now create data for four rows and four columns randn(m, n) creates an array of m

rows and n columns.with the help of randn:

data = randn(len(idx), len(cols))

20 j. rogel-salazar

With this information, we now create our dataframe.

Since we used random numbers

to generate the data, the numbers

shown here will differ from those

you may obtain on your computer.

df = pd.DataFrame(data=data,

index=idx, columns=cols)

df.index.name=’date’

> print(df)

A B C D

date

2018-06-04 -0.025491 1.378149 -1.276321 -0.200059

2018-06-05 0.747168 -0.175478 0.181216 -0.601201

2018-06-06 -0.640565 -0.061296 1.495377 -0.042206

2018-06-07 1.160137 -1.909562 1.300981 -1.653624

A table like the one above is useful to summarise data

and it is fit for “human consumption”. However, in many In other words, it is an

arrangement that a human will

find easy to read and understand.
applications, it is much better to have a “long format” or

“melted” dataset, i.e., instead of arranging the data in a

rectangular format as shown above, we would like all the

data readings in a single column.

In ordet to achieve this, we need to repeat the dates and we

also require a new column to hold the feature to which each

reading corresponds. This can easily be done with Pandas

in a single command. The first thing we need to do is reset

the index.

This is because we need the date

to be part of the new formatted

dataset.

df.reset_index(inplace=True)

In order to melt the dataframe, we will use the melt method

that takes the following parameters: A column that will

become the new identifier variable with id_vars, the

advanced data science and analytics with python 21

columns to un-pivot are specified with value_vars and If no value_vars is provided, all

columns are used.finally the names for the variable and value columns with

var_name and value_name, respectively:

The original columns have become

entries in the column called

“features” and the values are in

the column “reading”.

> melted = pd.melt(df, id_vars=’date’,

var_name=’feature’,

value_name=’reading’)

> print(melted)

date feature reading

0 2018-06-04 A -0.025491

1 2018-06-05 A 0.747168

2 2018-06-06 A -0.640565

3 2018-06-07 A 1.160137

4 2018-06-04 B 1.378149

5 2018-06-05 B -0.175478

...

14 2018-06-06 D -0.042206

15 2018-06-07 D -1.653624

We can now set the index and sort the melted dataset:

melted.set_index(’date’, inplace=True)

melted.sort_index(inplace=True)

1.3.2 Time Series Data Manipulation

Let us take a look at some of the manipulations we have

described above used in a more real dataset. Remember the

time series for Apple Inc. returns discussed in Section 1.2?

22 j. rogel-salazar

Well, we will delve a bit more into that data. The dataset

is available at6 https://doi.org/10.6084/m9.figshare. 6 Rogel-Salazar, J. (2018a, May).
Apple Inc Prices Apr 2017 -
Apr 2018. https://doi.org
/10.6084/m9.figshare.6339830.v1

6339830.v1 as a comma-separated value file with the name

“APPL.CSV”. As usual, we need to load some libraries:

import numpy as np

import pandas as pd

We need to load the dataset with the help of Pandas; in this

case, with the read_csv method:

Make sure that you pass on the

correct path for the file!
appl = pd.read_csv(’APPL.CSV’)

appl.Date = pd.to_datetime(appl.Date,

format=’%Y-%m-%d’)

In the first line of the code above, we have used the

read_csv method in Pandas to load our dataset. We know

that the column called “Date” should be treated as datetime

and hence we use to_datetime to make that conversion. We are using to_datetime to

ensure that dates are appropriately

typed.
Please note that we are also giving Pandas a helping hand

by telling it the format in which the date is stored, in this

case as year, followed by month and day.

The dataset contains open, high, low and close (i.e., OHLC)

prices for Apple Inc. stock between April 2017 and April

2018. We are going to concentrate on the “Close” column,

but before we do that, we need to ensure that the dataset is

indexed by the time stamps provided by the “Date” column.

We can easily do that with the set_index method as follows:

https://doi.org/10.6084/m9.figshare.6339830.v1
https://doi.org/10.6084/m9.figshare
https://doi.org/10.6084/m9.figshare.6339830.v1
https://doi.org/10.6084/m9.figshare

advanced data science and analytics with python 23

appl.set_index(’Date’, inplace=True)

We can take a look at the closing prices:

We set up the index with

set_index().

We centre our attention on the use

of the closing prices.

> appl[’Close’].head(3)

Date

2017-04-25 144.529999

2017-04-26 143.679993

2017-04-27 143.789993

Notice that although we only requested Python to give us a

look at the Close column, the printout obtained added

automatically the index given by the dates. The data

provided is already ordered; however, in case we are dealing

with data where the index is not in the correct order, we can

use sort_index:

Sorting by the index is done with

sort_index().
df.sort_index(inplace=True)

The daily closing prices can be used to calculate the return

at time t for example, this can be expressed as:

Effectively a percentage change.Rt =
Pt − Pt−1

Pt−1
, (1.1)

where Pt is the price at time t and Pt−1 is the price at the

previous time period. We can apply this calculation in a

very easy step in Pandas as follows:

We are using pct_change() to

calculate the returns.
appl[’pct_change’] = appl.Close.pct_change()

We can see the result of this calculation:

24 j. rogel-salazar

> appl[’pct_change’].tail(3)

2018-04-23 -0.002896

2018-04-24 -0.013919

2018-04-25 0.004357

Continuous compounding of returns leads to the use of log

The percentage change from one

day to the next is easily calculated.

returns and as mentioned in Section 1.2 they are calculated

as follows:
Continuous compounding of

returns leads to the use of log

returns.
rt = log(1 + Rt) = log

(

Pt

Pt−1

)

= log(Pt)− log(Pt−1). (1.2)

We need to calculate the logarithm of the price at each time

t and then take the difference between time periods. We can

certainly do this in Python, and Pandas gives us a helping

hand with the diff() method:

The diff method calculates the

difference from one time period to

the next.

appl[’log_ret’] = np.log(appl.Close).diff()

We can check the result of this operation by looking at the

values in the new column we have created:

We are looking at the last three

entries in our table.

> appl[’log_ret’].tail(3)

2018-04-23 -0.002901

2018-04-24 -0.014017

2018-04-25 0.004348

This is the data that we show in Figure 1.1, and indeed

this is the way we calculated that time series shown in the

figure.

advanced data science and analytics with python 25

It is fairly common to have financial data series like the

one we have used above, where the frequency is given

by the end of day prices. However, the frequency can be

different, for instance given by the minimum upward or

A “tick” is a measure of the

minimum upward or downward

movement in the price of a

security.
downward price movement in the price of a security. This

is known as a tick. Let us take a look at tick data for the

Bitcoin/USD exchange rate. The dataset is available at7 7 Rogel-Salazar, J. (2018b, Jun).
Bitcoin/USD exchange rate Mar
31-Apr 3, 2016. https://doi.org
/10.6084/m9.figshare.6452831.v1

https://doi.org/10.6084/m9.figshare.6452831.v1 as a

comma-separated value file with the name bitcoin_usd.csv,

and it contains prices for covering tick data between March

31 and April 3, 2016.

We can read the data in the usual way. However, if we were

to inspect the data, we will notice that the date is stored in a Pro tip: Inspect your data before

importing it, it will save you a few

headaches!
column called time_start, and that the format is such that

the day is placed first, followed by the month and the year;

the time in hours and minutes is provided. We can use this

information to create a rule to parse the date:

parser = lambda date: pd.datetime.\

strptime(date, ’%d/%m/%Y %H:%M’)

We can now provide extra information to Pandas to read the

data and parse the dates at the same time:

We specify the columns to be

parsed and how they shall be

parsed!

fname = ’bitcoin_usd.csv’

bitcoin = pd.read_csv(fname,

parse_dates=[’time_start’],

date_parser=parser,

index_col=’time_start’)

https://doi.org/10.6084/m9.figshare.6452831.v1
https://doi.org/10.6084/m9.figshare.6452831.v1
https://doi.org/10.6084/m9.figshare.6452831.v1

26 j. rogel-salazar

Notice that we are specifying what columns need to be

parsed as dates with parse_dates and how the parsing

should be performed with date_parser. We also load the

dataset indicating which column is the index. Let us

concentrate now on the closing price and the volume:

We are effectively creating a new

dataframe called ticks.
ticks = bitcoin[[’close’, ’volume’]]

The data is roughly on a minute-by-minute frequency. We

can use Pandas to resample the data at desired intervals.

For instance we can request for the data to be sampled every

five minutes and take the first value in the interval:

We can resample our data with the

help of resample().

> ticks.resample(’5Min’).first()

close volume

time_start

2016-03-31 00:00:00 413.27 8.953746

2016-03-31 00:05:00 413.26 0.035157

2016-03-31 00:10:00 413.51 43.640052

...

We can also ask for the mean, for example

We can specify how the

resampling will be performed.

> ticks.resample(’5Min’).mean()

close volume

time_start

2016-03-31 00:00:00 413.270 2.735987

2016-03-31 00:05:00 413.264 2.211749

2016-03-31 00:10:00 414.660 37.919166

...

advanced data science and analytics with python 27

In this way we could get the closing price for the day by

resampling by day and requesting the last value:

The closing for the new

resampling interval can be

obtained from the last value.

> ticks.resample(’D’).last()

close volume

time_start

2016-03-31 416.02 0.200000

2016-04-01 417.90 52.099684

2016-04-02 420.30 0.850000

...

Now that we know how to resample the data, we can

consider creating a new open, high, low and close set of

prices for the resampled data. Let us do this for the

five-minute bars:

The ohlc() method lets us find the

OHLC prices for our new sampled

data.

> bars = ticks[’close’].resample(’5Min’).ohlc()

open high low close

time_start

2016-03-31 00:00:00 413.27 413.27 413.27 413.27

2016-03-31 00:05:00 413.26 413.28 413.25 413.28

2016-03-31 00:10:00 413.51 414.98 413.51 414.98

Pandas will take the first and last values in the interval to be

the open and close for the bar. Then it will take the max and

min as the high and low, respectively. In this way, we start

filtering the data. For example, imagine we are interested in

the prices between 10 am and 4 pm each day:

28 j. rogel-salazar

> filtered = bars.between_time(’10:00’, ’16:00’)

open high low close

time_start

2016-03-31 10:00:00 416.00 416.00 415.98 415.98

2016-03-31 10:05:00 415.98 415.98 415.97 415.97

...

2016-04-03 15:55:00 421.01 421.02 421.00 421.00

2016-04-03 16:00:00 421.01 421.01 421.01 421.01

We may be interested in looking at the price first thing in

Notice the use of between_time to

filter the data.

the morning — say 8 am:

In this case we are using the

at_time method.

> bars.open.at_time(’8:00’)

time_start

2016-03-31 08:00:00 416.11

2016-04-01 08:00:00 416.02

2016-04-02 08:00:00 420.69

2016-04-03 08:00:00 418.78

Not only that, we can request the percentage change too by

combining the methods we have already discussed:

And the methods can be easily

combined!

> bars.open.at_time(’8:00’).pct_change()

time_start

2016-03-31 08:00:00 NaN

2016-04-01 08:00:00 -0.000216

2016-04-02 08:00:00 0.011225

2016-04-03 08:00:00 -0.004540

advanced data science and analytics with python 29

Please note that the first percentage change cannot be

calculated as we do not have a comparison data point from

the previous interval. In this case, Pandas indicates this by

the use of NaN.

If we inspect the data with a bit more detail, we will see

that for the last part of April 3, the frequency is such that

we have some missing bars when sampling at five-minute

intervals:

In many cases we may find that

we have some missing data in our

datasets...

> bars.tail()

open high low close

time_start

2016-04-03 23:35:00 420.6 420.6 420.6 420.6

2016-04-03 23:40:00 NaN NaN NaN NaN

2016-04-03 23:45:00 NaN NaN NaN NaN

2016-04-03 23:50:00 420.6 420.6 420.6 420.6

2016-04-03 23:55:00 421.0 421.0 420.6 420.6

We can fill in missing data with the help of fillna, which

takes a parameter called method. It can be either ’pad’ or We can fill in missing data with

the help of fillna().
’ffill’ to propagate last valid observation forward; or

instead either ’backfill’ or ’bfill’ to use the next valid

observation to fill the gap. We can also limit the number of

consecutive values that should be filled in with limit.

For instance we can fill only one gap by propagating the last

valid value forward:

30 j. rogel-salazar

> bars.fillna(method=’ffill’, limit=1)

...

2016-04-03 23:35:00 420.60 420.60 420.60 420.60

2016-04-03 23:40:00 420.60 420.60 420.60 420.60

2016-04-03 23:45:00 NaN NaN NaN NaN

2016-04-03 23:50:00 420.60 420.60 420.60 420.60

2016-04-03 23:55:00 421.00 421.00 420.60 420.60

Let us fill both gaps and create a new dataframe:

Here we have filled the missing

data by bringing the last value

forward and limitting the

operation to one time period.

filledbars = bars.fillna(method=’ffill’)

For the volume it would make sense to consider the sum of

all the securities traded in the five-minute interval:

volume = ticks.volume.resample(’5Min’).sum()

vol = volume.fillna(0.)

A plot of the open, high, low and close prices for the five-

minute bars, together with the corresponding volume for

the 3rd of April between 9 am and 11.59 pm is shown in

Figure 1.5 and can be created as follows:

The plotting commands that we

know and love are available to the

Pandas series and dataframes too.

filledbars[’2016-04-03’].between_time(’9:00’,\

’23:59’) .plot(\

color=[’gray’,’gray’,’gray’,’k’],

style=[’-’,’--’,’-.’,’-+’])

vol[’2016-04-03’].between_time(’9:30’,’23:59’)\

.plot(secondary_y=True, style=’k-o’)

advanced data science and analytics with python 31

00:00
04-Apr

09:00 12:00 15:00 18:00 21:00

Time

418

419

420

421

Pr
ice

open
high
low
close

0

50

100

150

200

250

300

350

Volum
e

Figure 1.5: Open, high, low and
close prices for the exchange rate
of bitcoin/USD.

1.4 Modelling Time Series Data

We know that there is no such a thing as a perfect model,

just good enough ones. With that in mind, we can start

thinking about the assumptions we can make around data There is no such thing as a perfect

model... just good enough ones.in a time series. We would like to start with a simple model,

and perhaps one of the first assumptions we can make is

that there is no structure in the time series. In other words,

we have a situation where each and every observation is in

effect an independent random variate.

32 j. rogel-salazar

A good example of this would be white noise. In this case White noise is whose intensity is

the same at all frequencies within

a given band.
when facing this type of signal the best we can do is simply

predict the mean value of the dataset.

Let us create some white noise in Python with the help of

numpy:

import numpy as np

import pandas as pd

white = 2*np.random.random(size=2048)-1

white = pd.Series(white)

In the code above, we are using the random method in

numpy.random to draw samples from a uniform distribution.

We would like our samples to be drawn from Uni f [a, b)

with a = −1 and b = 1 so that we have white noise with Hence the use of (b − a)(sample) +

a.mean zero. A plot for one such time series is shown in

Figure 1.6.

Remember that we are assuming that each observation is We are keeping it simple.

independent from the other. If there is correlation among

the values of a given variable, we say that the variable is

autocorrelated. For a repeatable (random) process X, let Xt be

the realisation of the process at time t; also let the process

have mean µt and variance σ2
t . The autocorrelation R(s, t)

between times t and s is given by:

Autocorrelation.R(s, t) =
E[(Xt − µt)(Xs − µs)]

σtσs
, (1.3)

where E[·] is the expectation value. Autocorrelation

provides us with a measure of the degree of similarity

advanced data science and analytics with python 33

0 500 1000 1500 2000
t

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
I

Figure 1.6: White noise with zero
mean, constant variance, and zero
correlation.between the values of a time series and a lagged or shifted

version of that same series. Notice that we can recover the

usual correlation definition for the case where Xt and Xs are

two random variables not drawn from the same process at

lagged times.

Therefore, as with correlation, the values returned by an

autocorrelation calculation lie between −1 and 1. It is also Autocorrelation values lie between

−1 and 1.important to mention that autocorrelation gives us

information about the existence of linear relationships. Even

when the autocorrelation measure is close to zero, there may

be a nonlinear relationship between the values of a variable

and a lagged version of itself.

Let us calculate the autocorrelation for our generated white

noise:

34 j. rogel-salazar

> for lag in range(1,5):

print("Autocorrelation at lag={0} is {1}".\

format(lag, white.autocorr(lag)))

Autocorrelation at lag=1 is 0.027756062237309434

Autocorrelation at lag=2 is 0.017698046805029784

Autocorrelation at lag=3 is -0.016764938190346888

Autocorrelation at lag=4 is -0.03636909301996918

The values returned by autocorr are the same as those we

Autocorrelation can be calculated

with autocorr.

would obtain if we calculated the correlation of the time

series with a shifted version of itself. Take a look:

As we can see the result is the

same.

> print(white.corr(white.shift(1)))

0.027756062237309434

Here shift(n) translates the series by n periods, in this case

1, enabling us to calculate the autocorrelation value.

Finally, predicting (or calculating) the mean value can be

readily done as follows:

> print(white.mean())

-0.019678911755368275

1.4.1 Regression. . . (Not) a Good Idea?

We have seen how to deal with processes that have no

inherent structure, and hence the predictions we can make

advanced data science and analytics with python 35

are quite straightforward. Let us take a step forward and

And boring ones, for that matter.consider more interesting processes. If we were to compare

the time series for the closing prices of the Apple stock

shown in Figure 1.3 with the white noise we generated

for Figure 1.6, we can clearly see that there is indeed more

structure in the price data: There are peaks and troughs and

we can even notice an upward trend.

2017-06
2017-08

2017-10
2017-12

2018-02
2018-04

Date

145

150

155

160

165

170

175

180

 P
ric

e

Closing Price
Trend

Figure 1.7: Closing prices for
Apple Inc. for a year since April
2017 and a trend line provided by
a multivariate regression.We are familiar with some techniques such as multivariate

regression, and it may be conceivable to apply these

techniques to the data we have. At the very least, it may

Regression may provide us with

an idea of the trend.

provide us with an idea of the trend in the time series.

Ignoring seasonal variation and random noise, we can fit a

polynomial model to the data as show in Figure 1.7. We can

see the general trend in the set. But is this really a suitable

model?

36 j. rogel-salazar

It is hard to believe that the closing price of the Apple

stock is simply a function of the calendar date!! It is more

likely that the prices are a function of their own history, As well as market forces, product

announcements, etc.and therefore we require methods that are able to capture

precisely this assumed dependency, and given the results

decide whether the model is fit for purpose. We will tackle

some models to achieve this in the rest of this chapter.

1.4.2 Moving Averages and Exponential Smoothing

We are interested in finding a model that is able

to forecast the next value in our time series data. In the We are interested in creating a

forecast.previous section we have seen how we can make some

assumptions about the data we have and use that to our

advantage. In the example with the Apple Inc. prices, we

have been able to fit a regression model to the data, but

surely we can do better than that.

What about if we are able to forecast the future value based

on the past values of the time series? For example, we may

be able to take the average of the last n observations as

In moving averages, the forecast is

provided by the simple mean over

a period of time.

the forecast for the next time period. This methodology is

known as moving averages. For example, in the case where An alternative name for moving

averages is rolling averages.n = 3, the smoothened value at time t, st, will be given by:

st =
xt−2 + xt−1 + xt

3
. (1.4)

We can also consider giving greater importance to more

recent past values than older ones. It sounds plausible, Exponential smoothing works by

weighting past observations.right? Well, this is actually what exponential smoothing

advanced data science and analytics with python 37

enables us to do. The weighting is performed via constant

values called smoothing constants. The simplest method is

appropriately called simple exponential smoothing (SES) and it

uses one smoothing constant, α.

In SES, we start by setting s0 to x0 and subsequent periods

at time t are given by:

The simple exponential smoothing

method.
st = αxt + (1 − α)st−1, (1.5)

with 0 ≤ α ≤ 1. The smoothing is a function of α; we have a

quick smoothing when α is close to 1, and a slow one when

it is close to 0. We choose the value of α such that the mean

of the squared errors (MSE) is minimised.

We can calculate moving averages and exponential

smoothing on a time series with Pandas. For moving We can use Pandas to calculate

moving averages and exponential

smoothing.
averages, we simply use the rolling method for Pandas

dataframes. In the case of the Apple Inc. closing prices we

have been investigating, we can write the following:

appl[’MA3’]=appl[’Close’].rolling(window=3).mean()

where we have provided the size of the moving window

and indicated that the aggregation of the data will be the

mean of the values.

For exponential smoothing, Pandas provides the ewm

method. We simply pass the parameter α as follows: EWM stands for Exponential

Weighted Methods.

alpha=0.6

appl[’EWMA’]=apple[’Close’].ewm(alpha=alpha).mean()

38 j. rogel-salazar

2017-06 2017-08 2017-10 2017-12 2018-02 2018-04

150

160

170

180
Pr

ice

Closing Price
Moving Average

2017-06 2017-08 2017-10 2017-12 2018-02 2018-04

Date

150

160

170

180

Pr
ice

Closing Price
Exponential Smoothing

Figure 1.8: Moving averages
(upper panel) and exponential
smoothing (lower panel) applied
to the closing prices for Apple Inc.

The method also accepts other definitions such as the centre

of mass, the span or the half-life. In Table 1.4 we list the

relationship between α and these alternative parameters.

EWM parameter Definition

Centre of Mass (com) α = 1
1+com , for com ≥ 0

Span α = 2
1+span , for span ≥ 1

Half-life α = 1 − exp
[

log(0.5)
halflife

]

, for halflife > 0

Table 1.4: Parameters specifying
the decay applied to an
exponential smoothing calculation
with ewm.

In Figure 1.8 we can see the result of using moving averages

and exponential smoothing compared to the closing prices

for Apple Inc.

advanced data science and analytics with python 39

1.4.3 Stationarity and Seasonality

We have been considering some of the assumptions we

can make on our data in order to come up with models that A stationary time series is one

where its mean, variance and

autocorrelation do not change over

time.

enable us to understand the underlying phenomena and

create predictions. One such common assumption is that

our time series is stationary.

In this context, we say that a process is stationary if its

mean, variance and autocorrelation do not change over time.

As you can imagine, stationarity can be defined in precise

mathematical terms, but a practical way of remembering Effectively a flat-looking series.

what we are talking about is effectively a flat-looking series,

one where there is no trend and has constant variance over

time and without periodic fluctuations or seasonality.

Before we continue our discussion about stationarity, let

us take a look at seasonality. This can be understood as a

cycle that repeats over time, such as monthly, or yearly. This Or any other time interval.

repeating cycle may interfere with the signal we intend to

forecast, while at the same time may provide some insights

into what is happening in our data.

Understanding the seasonality in our data can improve our

modeling as it enables us to create a clearer signal. In other

words, if we are able to identify the seasonal component in

our series, we may be able to extract it out leaving us with a A time series with a clear seasonal

component is said to be non-

stationary.
component which we understand (the seasonal part) plus a

clearer relationship between the variables at hand. When we

remove the seasonal component from a time series, we end

up with a so-called seasonal stationary series.

40 j. rogel-salazar

There are many ways in which we can take a look at the

seasonality in a time series. In this case, let us take a look at

using the Fast Fourier Transform (FFT) to convert the time-

dependent data into the frequency domain. This will enable

us to analyse if any predominant frequencies exist. In other

words, we can check if there is any periodicity on the data.

We will not cover the intricate details of the mathematics

behind the FFT, but a recommended reading is the excellent

Numerical Recipes8 book. 8 Press, W., S. Teukolsky,
W. Vetterling, and B. Flannery
(2007). Numerical Recipes 3rd
Edition: The Art of Scientific
Computing. Cambridge University
Press

Let us take a look at the sunspot data we plotted in Figure

1.2. In that figure we have monthly observations for the sun

activity. In the analysis below we will resample the data

into yearly observations. The data can be found9 at https: 9 Rogel-Salazar, J. (2018d, Jul).
Sunspots - Monthly Activity
since 1749. https://doi.org
/10.6084/m9.figshare.6728255.v1

//doi.org/10.6084/m9.figshare.6728255.v1 as a comma-

separated value file with the name “sunspots_month.CSV”.

After loading the usual modules such as Pandas, we can

read the data as follows:

While loading the data, we can

specify the format for reading the

date.

sun = pd.read_csv(’sunspots_month.csv’)

sun.Year = pd.to_datetime(sun.Year,

format=’%Y-%m-%d’)

sun.set_index(’Year’, inplace=True)

We are specifying the format in which the dates should be

parsed. We also indicate which column is the index in our

dataset.

As we mentioned before, we have monthly data and we

would like to take a yearly view. The first thing we are

going to do is obtain a yearly average:

https://doi.org/10.6084/m9.figshare.6728255.v1
https://doi.org/10.6084/m9.figshare.6728255.v1
https://doi.org/10.6084/m9.figshare.6728255.v1
https://doi.org/10.6084/m9.figshare.6728255.v1

advanced data science and analytics with python 41

sun_year = sun.resample(’Y’).mean()

Let us now load the FFT pack from scipy:

We are resampling the data to a

yearly frequency.

Fast Fourier transform capabilities

are part of fftpack in scipy.

from scipy import fftpack

Given the signal of the yearly sunspot activity we can

calculate its Fourier transform. We also calculate a

normalisation constant n:

We calculate the FFT of the signal

and a normalisation constant.

Y=fftpack.fft(sun_year[’Value’])

n=int(len(Y)/2)

With this information we can create an array to hold the

frequencies in the signal, with the period being the inverse

frequency:

With this information we can

obtain the period.

freq=np.array(range(n))/(2*n)

period=1./freq

We can now calculate the power spectrum of the signal as

follows:

And finally the power spectrum of

the signal.

power=abs(Y[1:n])**2

A plot of the power spectrum versus the period is shown in

Figure 1.9 where we can see that the sunspot activity data

is periodic, and that the sunspots occur with a maximum in

activity approximately every 11 years. Cool!

42 j. rogel-salazar

0 5 10 15 20 25 30
Period (Year)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
|F
FT

|2

1e7

Figure 1.9: Analysis of the power
spectrum of the sunspots data. We
can see that a maximum in activity
occurs approximately every 11
years.

1.4.4 Determining Stationarity

We have seen that there is seasonality in our sunspot

data and so, it is a non-stationary time series. In other

cases we may need to check that the mean and variance are

constant and the autocorrelation is time-independent. We

can do some of these checks by plotting rolling statistics Rolling statistics can help us

determine stationarity.to see if the moving average and/or moving variance vary

with time.

Another method is the Dickey-Fuller test which is a The Dickey-Fuller tests enables us

to check for stationarity too.statistical test for checking stationarity. In this case the null

hypothesis is that the time series is nonstationary based on

the results of a test statistic, and critical values for different

confidence levels. If the test statistic is below the critical

value, we can reject the null hypothesis and say that the

series is stationary.

advanced data science and analytics with python 43

1760 1780 1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000
Year

0

25

50

75

100

125

150

175
Nu

m
. o

f S
un

 sp
ot

s
Sunspot activity
Rolling Mean
Rolling Standard Deviation

Figure 1.10: Sunspot activity and
rolling statistics for the average
and the standard deviation.

Let us see what this means for our monthly sunspot activity

data. We can calculate rolling statistics for the mean and

variance:

Rolling statistics for a window of 2

years.

rolling_mean = sun_year[’Value’].rolling(2).mean()

rolling_std = sun_year[’Value’].rolling(2).std()

In Figure 1.10 we can see the rolling statistics for the

sunspot activity. The variation on the average is larger than

that on the standard deviation, but they do not seem to be

increasing or reducing with time.

Let us take a look at the Dickey-Fuller test. In this case we

are going to use the adfuller method in statsmodels time

series analysis module tsa.stattools: The Dickey-Fuller test can be

evaluated with the help of

adfuller method in statsmodels.from statsmodels.tsa.stattools import adfuller

df_test = adfuller(sun_year[’Value’],autolag=’AIC’)

44 j. rogel-salazar

We can now take a look at the results of the Dickey-Fuller

test with the following function:

The Dickey-Fuller test

implementation returns 4 items

including the test statistic, the

p-value, the lags used and the

critical values.

def isstationary(df_test):

stationary=[]

print(’Test Statistic is {0}’.format(df_test[0]))

print(’p-value is {0}’.format(df_test[1]))

print(’No. lags used = {0}’.format(df_test[2]))

print(’No. observations used = {0}’.\

format(df_test[3]))

for key, value in df_test[4].items():

print(’Critical Value ({0}) = {1}’.\

format(key, value))

if df_test[0]<=value:

stationary.append(True)

else:

stationary.append(False)

return all(stationary)

Let us look at the results:

In this case we see that the Dickey-

Fuller test applied to the sunspots

data supports the null hypothesis.

> isstationary(df_test)

Test Statistic is -2.4708472868362916

p-value is 0.12272956184228762

No. lags used = 8

No. observations used = 256

Critical Value (1%) = -3.4561550092339512

Critical Value (10%) = -2.5728222369384763

Critical Value (5%) = -2.8728972266578676

False

advanced data science and analytics with python 45

As we can see, we cannot reject the null hypothesis and

the yearly data for the sunspot activity is therefore non-

stationary.

Extracting the trend and seasonality out of the time series

data provides us with better ways to understand the process

at hand. A useful technique for this is to decompose the

time series into those components that are amenable to

be described by a model. Given a time series Yt, a naïve

Systematic components are those

that can be modelled.

additive model decomposes the signal as follows:

Additive decomposition.Yt = Tt + St + et, (1.6)

where Tt is the trend, St is the seasonality and et

corresponds to the residuals or random variation in the

series. An alternative to this decomposition is the so-called

multiplicative model:

Multiplicative decomposition.Yt = (Tt) (St) (et) . (1.7)

We can use seasonal_decompose from statmodels to

decompose the signal using moving averages.

Since we have seen that we have a seasonality of around 11

years, we will use this information to decompose our time

series:

seasonal_decompose lets us

decompose a time series into its

systematic and non-systematic

components.

import statsmodels.api as sm

dec_sunspots = sm.tsa.seasonal_decompose(sun_year,\

model=’additive’, freq=11)

We can use a multiplicative method by passing on the

parameter model=’multiplicative’. The result of the

46 j. rogel-salazar

decomposition is an object that has a plotting method. We

can look at the result of the decomposition by typing

dec_sunspots.plot() and the output can be seen in Figure

1.11 where we have plots for the trend, seasonality and the

residuals.

20

40

60

80

Tr
en

d

20

0

20

Se
as
on

al
ity

1770 1820 1870 1920 1970 2020
Date

50

0

50

100

Re
sid

ua
ls

Figure 1.11: Trend, seasonality
and residual components for the
sunspot dataset.Let us apply the Dickey-Fuller test to the bitcoin tick data

defined on page 26. Let us resample the data on 15-minute

intervals and take the average:

The bitcoin data is non-stationary.

closing_bitcoin=ticks[’close’].\

resample(’15Min’).mean()

df_test_bitcoin = adfuller(closing_bitcoin,\

autolag=’AIC’)

advanced data science and analytics with python 47

416

417

418

419

420

Tr
en

d

0.5

0.0

0.5

1.0

Se
as
on

al
ity

31 01
Apr
2016

0402 03

Date

2

1

0

1

2

Re
sid

ua
ls

Figure 1.12: Trend, seasonality
and residual components for the
bitcoin dataset.

> isstationary(df_test_bitcoin)

Test Statistic is -1.4531293932585607

p-value is 0.5565571771135377

No. lags used = 10

No. observations used = 373

Critical Value (1%) = -3.448003816652923

Critical Value (5%) = -2.86931999731073

Critical Value (10%) = -2.5709145866785503

False

We can see the decomposition in Figure 1.12.

48 j. rogel-salazar

1.4.5 Autoregression to the Rescue

So far, we have been doing O.K. with the time series we

have seen. However, we know that simply using a linear or

polynomial fit to the data is not good enough. Furthermore, We have seen that using a linear or

polynomial fit is not good for time

series.
we cannot ignore the seasonal variation and the random

noise that makes up the signal.

When we discussed the idea of moving averages, we

considered that a better approach was to see if the next

value in the series can be predicted as some function of its

previous values. A way to achieve this is autoregression. So, Autoregression is exactly what it

sounds like: A regression on the

dataset itself.
we are therefore interested in building a regression model of

the current value fitted on one (or more) previous values

called lagged values. This sounds great, but how many

lagged values do we need?

Well, we can take a look at the time series and check how

much information there is in the previous values, helping

us with our prediction. We can do this with the help of the

autocorrelation function (ACF) we defined in Equation (1.3).

Similarly, we can look at the partial autocorrelation function

(PACF) which controls the values of the time series at all

shorter lags, unlike the autocorrelation.

The correlation function will test whether adjacent

observations are autocorrelated; in other words, it will help

us determine if there are correlations between observations

1 and 2, 2 and 3, ... n − 1 and n. Similarly, it will test at other

This is known as “lag-one

autocorrelation”.

lags. For instance, the autocorrelation at lag 4 tests whether

observations 1 and 5, 2 and 6,... are correlated.

advanced data science and analytics with python 49

In general, we should test for autocorrelation at lags 1 to

n/4, where n is the total number of observations in the

analysis. Estimates at longer lags have been shown to be

statistically unreliable10. 10 Box, G. and G. Jenkins (1976).
Time series analysis: forecasting and
control. Holden-Day series in
time series analysis and digital
processing. Holden-Day

We can take a look at the autocorrelation and partial

autocorrelation for the sunspot dataset with the following

code:

sm.graphics.tsa.plot_acf(sun_year, lags=40)

sm.graphics.tsa.plot_pacf(sun_year, lags=40)

Figure 1.13: Autocorrelation and
partial autocorrelation for the
sunspot dataset.

Figure 1.13 shows the result of the code above. We can see

in the upper panel that the autocorrelation shows a periodic

structure, reflecting the seasonality in the time series.

50 j. rogel-salazar

Figure 1.14: Autocorrelation and
partial autocorrelation for the
bitcoin dataset.A similar computation can be carried out for the bitcoin

dataset. The result can be seen in Figure 1.14. As we can see

in the upper panel, the correlation fades slowly as we take

longer and longer lagged values.

It stands to reason that if value 0 is correlated with value 1,

and value 1 is correlated with 2, it follows that 0 must be

correlated with 2. This is why we need the partial Partial autocorrelation tells

us about the relationship of

observations with earlier ones,

but without the intervening

observations.

autocorrelation, as it provides us with information about the

relationship between an observation with observations at

prior time steps, but with the crucial difference that the

intervening observations are removed.

advanced data science and analytics with python 51

In the examples of the sunspot and bitcoin datasets, we can

A correlogram is a plot showing

the correlation statistics.

see from the lower panels of the correlograms in Figures

1.13 and 1.14 that only the most recent values are really

useful in building an autoregression model.

A PACF correlogram with a large spike at one lag that

decreases after a few lags usually indicates that there is a

moving average term in the series. In this case, the

autocorrelation function will help us determine the order of

the moving average term. If instead we have a large spike at

one lag followed by a damped oscillating correlogram, then A large spike followed by damped

oscillations indicates a higher

order moving average term.
we have a higher order moving average term. This is the

picture we get from the lower panel of Figure 1.13 for the

sunspot data.

In the case of the correlogram shown in the lower panel

of Figure 1.14, we have a few important correlations in the

first few lags that die out quite quickly. In this case we can A spike on the first lags followed

by not very important ones

suggests the presence of an

autoregressive term.

interpret this as having a time series with an autoregressive

term. We can determine the order of this autoregressive

term from the spikes in the correlogram. We will discuss

autoregressive models in the following section.

1.5 Autoregressive Models

An autoregressive (AR) model is a representation of a

type of random process where the future values of the series

are based on weighted combinations of past values. As such,

an AR(1) is a first-order process in which the current value

52 j. rogel-salazar

is based only on the immediately previous value:

Yt = β0 + β1Yt−1 + ǫt. (1.8)

An AR(2) process,

AR(1) model.

AR(2) model.Yt = β0 + β1Yt−1 + β2Yt−2 + ǫt, (1.9)

determines the current value based on the previous two

values, and so on.

It is possible to use autoregression and moving averages in

combination to describe various time series. This

methodology is usually called autoregressive moving

average (ARMA) modelling. In ARMA modelling we use ARMA - Autoregressive Moving

Average.two expressions to describe the time series, one for the

moving average and the other one for the autoregression.

ARMA(p, q) denotes a model with autoregression of order p

and moving average of order q.

A further generalisation of an ARMA model is the so-called

autoregressive integrated moving average or ARIMA

model. The AR and MA parts of the acronym follow the ARIMA - Autoregressive

Integrated Moving Average.discussion above. The integrated (or “I”) part is perhaps less

clear, but effectively it means that the time series has been

rendered stationary by taking differences. In other words,

instead of looking at the observation Y1 we are interested in

Y1 − Y0.

An ARIMA(p, d, q) model puts together all the techniques

we have discussed in this chapter and is specified by three

parameters: p, d, and q, where:

advanced data science and analytics with python 53

• p: Denotes the order of the autoregression
The meaning of the parameters in

an ARIMA(p, d, q) model.• d: Denotes the number of difference levels

• q: Denotes the order of of moving average

We have some commonly used models, such as:

• ARIMA(0, 0, 0) is simply predicting the mean of the

overall time series. In other words, there is no structure! Some common ARIMA models.

• ARIMA(0, 1, 0) works out the differences (not the raw

values) and predicts the next one without autoregression

or smoothing. This is effectively a random walk!

Let us take a look at applying ARMA and ARIMA models

to the sunspot dataset. For instance we can apply an

ARMA(9, 0) model as follows:

The results of applying an

ARMA(9, 0) model to the sunspot

dataset.

arma_sun = sm.tsa.ARMA(sun_year, (9, 0)).fit()

print(arma_sun.params)

const 50.466706

ar.L1.Value 1.161912

ar.L2.Value -0.387975

ar.L3.Value -0.179743

ar.L4.Value 0.148018

ar.L5.Value -0.098705

ar.L6.Value 0.036090

ar.L7.Value 0.014294

ar.L8.Value -0.055000

ar.L9.Value 0.226996

54 j. rogel-salazar

The best model can be found by changing the parameters

p and q of the model such that we minimise any of the See Appendix A for more details

about these information criteria.various information criteria such as the Akaike (AIC), the

Bayesian (BIC) or the Hannan-Quinn (HQIC) information

criterion.

Evaluation of the AIC, BIC and

HQIC information criteria.

print("AIC: ", arma_sun.aic)

print("BIC: ", arma_sun.bic)

print("HQIC:", arma_sun.hqic)

AIC: 2230.4154805952835

BIC: 2269.792508681132

HQIC: 2246.236568447941

We can also apply an ARIMA model, in this case an

ARIMA(9, 1, 0):

An abridged version of the

summary provided by the

ARIMA(9, 1, 0) model applied

to the sunspot dataset.

arima_mod= ARIMA(sun_year, order=(9,1,0)).fit()

> print(arima_mod.summary())

ARIMA Model Results

===

Dep. Variable: D.Value No. Observations: 264

Model: ARIMA(9, 1, 0) Log Likelihood -1103.368

Method: css-mle S.D. of innovations 15.716

...

AIC 2228.736

BIC 2268.072

HQIC 2244.542

===

advanced data science and analytics with python 55

1970 1980 1990 2000 2010 2020
Year

0

25

50

75

100

125

150

175

200
Nu

m
. o

f S
un

 sp
ot

s
Sunspot activity
Prediction

Figure 1.15: Prediction for
the sunspot activity using an
ARMA(9, 0) model.

Finally, it is important to note that in the ideal scenario

we would carry out the analysis on a training dataset to

develop a predictive model to be tested against a testing set.

Nonetheless, let us take a look at the predictions we could

draw, in this case for the ARMA model above:

We can run predictions from the

models with the predict method

for each of them.

predict_sunspots = arma_sun.predict(’1980’,\

’2050’, dynamic=True)

The result can be seen in Figure 1.15 where we can compare

the actual values of the sunspot activity against the

predictions made by the model for the years between 1980

and 2020. Not bad for a model that has not been curated!!

56 j. rogel-salazar

1.6 Summary

In this chapter we addressed some important aspects of

dealing with time series data and no Jackalope data scientist

must be without this knowledge. We have seen that time

series are different from other data sets due to the time

component. We saw some relevant examples such as the

prices of the Apple Ltd. stock, sunspot activity since the

mid-1700s and even the exchange rate of bitcoins to US

dollars.

We were able to deal with these various datasets thanks

to Python modules such as Pandas and statsmodels. We

saw how Pandas enables us to index our dataframes with

time and looked at appropriate transformations that Pandas

enables us to carry out such as resampling, slicing and

dicing, filtering, aggregating and plotting.

In terms of modelling time series, we covered how moving

averages and exponential smoothing let us get a first

approach at forecasting future values of the series based on

previous observations. We discussed the concepts of

seasonality and stationarity in a time series. We applied

decomposition to our datasets and finally we discussed how

autoregression can be used to model time series, combining

the topics discussed in this chapter.

2

Speaking Naturally: Text and Natural Language

Processing

There are many kinds of language: We speak with our

body language, need to “mind our language” in certain

situations, we learn a foreign language to ask for a pain au

chocolat or una cerveza and we need language to understand Presented by le célèbre Jean-Brian

Zatapathique of course (Baa-aa,

baa-aa).
a French lecture on Sheep-Aircraft. Indeed we are also

using the Python programming language to create analytics

workflows and train machine learning models. We speak the

“language of love”, and avoid being confusing by speaking There are all kinds of languages,

including natural language.in “plain language”. What about natural language? Have you

heard of it? What is it and when do we use it?

Let us take a step back: The common theme among the

expressions we listed above is communication. In other Natural language has evolved

naturally in humans through

continued use.
words, the different expressions listed use the word language

to emphasise the fact that we communicate with other

humans in a variety of ways. Natural language is one of

those forms of communication. The term refers to the use of

58 j. rogel-salazar

any language that has evolved naturally in humans through

continued use, repetition and adaptation.

English, Spanish, Japanese and Nahuatl are some examples These are some examples of

natural languages.of natural languages. In contrast, languages like Python,

C++, Scala or Java, as well as Esperanto, Klingon, Elvish or

Dothraki are constructed languages. As you can imagine,

natural language can take different forms such as speech,

writing or even singing. In any case, communicating in a

natural (or constructed) language is a useful, if complex,

task. You may not notice it all the time, but imagine

interviewing a man who speaks entirely in anagrams. The Be ot or bot ne ot, tath is the

nestquoi!efforts to make sense out of the conversation would bring

things into focus.

Now, imagine that in your intergalactic travels you

encounter a rebel fleet where R2-D2 and C-3PO are on

board and you have an important message for Princess Leia

Organa. Naturally, you would like to communicate with See what I did there!

them in natural language not in beep-bops. You tell them

your message and they try to make sense of it, reacting

rapidly with excited “Beep-bee-bee-boop-bee-doo-weep”

and “You are quite clever you know... for a human being”.

Off they go to deliver the important information. Not bad...

remember, 3PO alone is fluent in over six million forms of

communication!

The tasks achieved by the loyal androids to take natural Natural language processing is

concerned with the interactions

between human language and

computers.

language as input, and make sense out of it are referred to

as natural language processing. Natural language processing

(NLP) is an area of computer science and artificial

advanced data science and analytics with python 59

intelligence concerned with the interactions between human

(natural) languages and computers. In particular, the term

refers to the programming of computers for processing and

analysing large amounts of natural language data. Some

typical challenges in the area go from natural language

understanding to speech recognition and even language

generation.

As you can imagine, in order for us to be able to parse,

analyse and understand natural language with the aid of

computers, we need to get hold of suitable data. A rich and Actually this is true not only for

natural language processing.readily available source of information—both for natural

language and other data—is the web. In this chapter we

will see how to extract data from the web using Beautiful

Soup and cover some useful ways to process text data

including the use of regular expressions and tokenisation.

We will then use topic modelling, an unsupervised machine

learning task, to start making sense of natural language.

2.1 Pages and Pages: Accessing Data from the Web

I am sure you have heard the self-evident truism that

data is everywhere. In the best of cases, it is indeed there, and

it can be used immediately. Unfortunately, in more cases

than not, the data that you want/need/desire is not in the

appropriate format, let alone readily available to you.

A typical situation is for useful data to be displayed in

Remember that seeing the

information is not the same as

accessing it...

webpages, but not be downloadable in a useful format. In

other words, being able to see the data is not the same as

60 j. rogel-salazar

accessing it. This is indeed a goal of many organisations

interested in open data. Open data refers to data available Open data is data available to

everyone.to everyone and which can be freely used, re-used and

redistributed, subject only, at most, to the requirement to

attribute and share alike. One of the tenets of open data is

that the data must be available as a whole and at no more

than a reasonable reproduction cost, preferably accessed via

the web in a convenient and modifiable form.

In an ideal scenario, data can be obtained with appropriate

Application Programming Interfaces (APIs) to make requests

for example via the HTTP protocol. In these cases you can

use the Requests module1 in Python for example. While 1 Reitz, K. Requests - http for
humans. http://docs.python-
requests.org/en/master/the efforts of the open data movement are slowly but surely

making data accessible to all, it is often the case that we still

need to obtain it in a more indirect way such as scraping Web scraping extracts or “scrapes”

data from a web page.the contents of a webpage: We could manually copy and

paste the data but that is as interesting as watching paint

dry. Instead, we automate the process to do this work

programmatically. There are some great modules such as

Scrapy2 or Beautiful Soup3 to do this work. In this case we 2 Scrapy. https://scrapy.org
3 Beautiful Soup.
https://www.crummy.com/
software/BeautifulSoup/

will obtain some data with the help of Beautiful Soup.

Given the semi-structured nature of the data encountered in

the web, it is necessary for us to determine what

information is relevant to be scraped and whether it

requires multiple pages to be parsed. Typically, we will

need to parse HTML code standard for creating webpages HTML stands for Hypertext

Markup Language.and web applications. The elements that describe the page

are defined by tags using angle brackets and they may look

like this: <body>...</body>. In this case we have a body tag

https://www.crummy.com
http://docs.pythonrequests.org
https://www.crummy.com
https://scrapy.org
http://docs.pythonrequests.org

advanced data science and analytics with python 61

and the text between <body> and </body> corresponds to the

visible content of the page.

Each tag has opening and closing versions; the closing tag

always precedes the element with a forward slash (/). There

are many other tags such as those shown in Table 2.1.

Tag Description

html HTML document

head
Information used by search engines and
browsers.

title The title of the document
body The content of the web page
h1, h2,... Headers: h1 is the main header, then h2, etc.
p Paragraph
div Block of content
a Link
ol Ordered list
ul Unordered list
il List item inside an ol or ul tag
table Table
tr Table row
th Table header
td Table data cell

Table 2.1: Common HTML tags.

Once we have determined the data that we are looking for, Beware old Jedis warning you that

“These are not be the datasets you

are looking for”...
we need to:

1. Read the HTML page

2. Parse the raw HTML string into a nicer more readable

format Steps for web scraping the data we

are interested in.

3. Extract the information we are interested in

62 j. rogel-salazar

4. Process our data, i.e., clean it, make any appropriate

transformations, etc.

5. Store, print, save, and take some actions with the data at

hand

Let us take a look at a very small, simple HTML document:

A very simple HTML document

with a title, a headline and

a paragraph marked with

appropriate tags.

<!DOCTYPE html>

<html>

<head>

<title>Page Title</title>

</head>

<body>

<h1>My First Heading</h1>

<p>My first paragraph.</p>

</body>

</html>

If you save that piece of code in a text file and open it in

a browser, it will look similar to the screenshot shown

in Figure 2.1. We can see at the top of the page the tab

with the page title, and then the main header followed

by a paragraph. It is not the most exciting website, but it

provides us with a flavour of what is to follow.

One of the main things we need to take into account when Make sure you check the sites’

terms and conditions.scraping the web for data are the terms and conditions

of the site. In some cases website owners do not permit

automated systems or software to extract data. The methods

shown here are in no way an encouragement to abuse terms

advanced data science and analytics with python 63

Figure 2.1: A very simple
webpage.and conditions placed by websites. Please make sure that

you:

• Respect the Terms of Service (ToS)

• Use an API if one is provided, instead of scraping data

• Respect the rules of robots.txt Robots.txt is a text file that

instructs web robots (such as

search engines) how to crawl

pages on a website.

• If ToS or robots.txt prevents you from crawling or

scraping, ask a written permission to the owner of the

site, prior to doing anything else

• Do not republish your crawled or scraped data or any

derivative dataset without verifying the license of the

data, or without obtaining written permission from the

copyright holder

The other thing that you need to consider when obtaining

data from webpages is the fact that the sites you are getting

the data from may change from time to time. The design And will definitely change!

may be different, the position of the data in the page will

move, the tags may have different metadata, there may be

pagination to consider, or simply the page may vanish into

thin air. You will have to be prepared to change your code

accordingly if you are to obtain your data programmatically.

Consider yourself forewarned.

64 j. rogel-salazar

2.1.1 Beautiful Soup in Action

Now that we have a better understanding of the task

we need to accomplish, let us take a look at obtaining some

data from a website. In order to make the task reproducible,

I have created a webpage and made it available off-line.

The page can be found at4 https://doi.org/10.6084/ 4 Rogel-Salazar, J. (2018c, Sep).
Iris Webpage. https://doi.org
/10.6084/m9.figshare.7053392.v4m9.figshare.7053392.v4 as an HTML document. For the

purposes of this book, we will work with a local copy of the

page, but you can get content live from the web too. I will

point out the way to do this as we go along.

Figure 2.2: A preview of the Iris
HTML webpage.

Back to our Iris Flower Dataset webpage: If you were to

double click on the HTML document in your file system, it

https://doi.org/10.6084/m9.figshare.7053392.v4
https://doi.org/10.6084/m9.figshare.7053392.v4
https://doi.org/10.6084/m9.figshare.7053392.v4
https://doi.org/10.6084/m9.figshare.7053392.v4

advanced data science and analytics with python 65

will automatically be opened in your browser and will look

similar to the screenshot in Figure 2.2. Our task is to extract

successfully the table in the page that contains the 50 data

points in the set. In order to accomplish our task, we will

need to look into the source code that generates the page.

The first few lines look like this:

The first few lines of the Iris

HTML webpage. Notice the use

of tags marking the different

elements of the page.

<!DOCTYPE html>

<html class="client-nojs" dir="ltr" lang="en">

<head>

<meta http-equiv="content-type" content=

"text/html;

charset=windows-1252">

<title>Iris flower data set</title>

</head>

<body class="qt-body">

<h1 id="firstHeading" class="firstHeading">

<i>Iris</i> Flower Dataset

</h1>

<div id="bodyContent" class="mw-body-content">

<p>This is one of the best known datasets in

data science and it is fair to say it has

become a canonical example in the training of

new data scientists.</p>

...

We need to be able to read the source page and parse it

so that we can make sense of its contents thanks to the

tags provided. The first thing we will do is open the page.

We can now use Beautiful Soup to

parse the HTML source code.

Here, I am assuming that the HTML file is saved locally in

66 j. rogel-salazar

your machine with the name iris_page.html. We can ask

Beautiful Soup to read and parse the HTML page as follows:

Make sure you provide the

appropriate path.

from bs4 import BeautifulSoup

fname = ’iris_page.html’

iris_soup = BeautifulSoup(open(fname), ’lxml’)

The third line above takes the HTML string to be parsed In this case the string to be parsed

is the HTML file.and the name of the HTML parser to use. In this case we are

using lxml and Beautiful Soup supports the parser included

in Python’s standard library, html.parser as well as others

such as html5lib.

In a more realistic situation, you may not have a local

version of the HTML page. Instead you would find the page

directly in the web. In this case, first you will need to do a

request to the URL of the page and parse the result, as

follows:

We can parse HTML source code

directly from live URLs in this

way.

from urllib.request import urlopen

from bs4 import BeautifulSoup

wp=’http://wikipedia.org/wiki/Iris_flower_data_set’

pageSource = urlopen(wp).read()

IrisSoup = BeautifulSoup(pageSource, ’lxml’)

We are using urlopen to request the URL of the page we are

interested in and pass the result as the HTML string that

Beautiful Soup will parse. Neat!

http://wikipedia.org

advanced data science and analytics with python 67

Figure 2.3: A schematic
representation of HTML as a
tree. We are only showing a few of
the branches.

Beautiful Soup has parsed the HTML and has enabled us

to make sense of the structure of the page. We can think

of HTML as a tree (see Figure 2.3) with different types

of objects. The objects that Beautiful Soup returns to us

include:

• Tags: Beautiful Soup objects that correspond to the actual

tags in the original HTML. Tags have attributes and

methods

• Navigable strings: Correspond to the text within a tag Beautiful Soup objects include

tags, navigable strings, comments

and a Beautiful Soup object.• Comments: A special type of navigable string to support

comments in the original HTML

• Beautiful Soup: Represents the document as a whole. It

can be searched and navigated

Let us take a look at the Iris webpage soup we have in our Bowl?... May be better!

hands. We can check the type of object in the usual manner:

68 j. rogel-salazar

> type(iris_soup)

bs4.BeautifulSoup

It is, as we can see, a Beautiful Soup object. It holds

We obtain a Beautiful Soup object

when parsing our HTML file.

information about the original HTML document:

The object has information about

the tags in the HTML.

> print(iris_soup.name)

’[document]’

> print(iris_soup.title)

<title>Iris flower dataset</title>

We can see that the name of the object is “document” and

we can start looking at the different tags inside the Iris

beautiful soup. In the code above, we are requesting the title

of the website. Note that the output is a tag object:

We can refer to the tags directly by

using their names.

> type(iris_soup.title)

bs4.element.Tag

In this case the tag is a “title” tag as we can easily verify

directly in the HTML source. What about if we are

interested in the actual title, i.e., the string inside the tag?

Well, all we need to do is request the string of the tag as

follows:

advanced data science and analytics with python 69

> print(iris_soup.title.string)

Iris flower dataset

> type(iris_soup.title.string)

bs4.element.NavigableString

Et voilà! Notice the type of object that is returned by the

It is possible to extract the strings

inside a tag.

string method for the tag: It is a navigable string. The

string method returns a single string within a tag. In other

words, if the tag has a single string child, then the returned

value will be that string. However, if the tag has no children,

or more than one child, the value returned will be None.

Remember the tree structure of the

HTML code when we talk about

parents and children!

In cases where the tag contains no children or more than

one child, it is useful to know that you can use a text

method which will return all the child strings concatenated.

Let us look at an example: In our Iris dataset website, the

first heading contains a string that reads “Iris Flower

Dataset”, with the first word in italics (see Figure 2.2). In

HTML this is created with an i tag. Let us look at the

contents of the heading with Beautiful Soup:

Notice that the result here is a list.

> iris_soup.h1.contents

[<i>Iris</i>, ’Flower\n Dataset\n ’]

The object returned is a list with two elements. This means

that the tag has effectively two children: The first one is a

tag, and the second one is a string. If we were to ask for the

70 j. rogel-salazar

string on this h1, we will get nothing. Instead we should be

asking for the text as follows:

The text method returns all the

child strings concatenated.

> iris_soup.h1.text

’Iris Flower \n Dataset\n’

Notice that the returned text has some white spaces

including special characters such as the \n. We can clean

these by replacing the spaces or using regular expressions See Section 2.2 for more

information about regular

expressions.
for example. Beautiful Soup offers the possibility of

stripping leading and trailing whitespaces with the help of

the stripped_strings generator:

Think of a generator as a function

that “generates” values on the fly.

> for ss in iris_soup.h1.stripped_strings:

print(repr(ss))

’Iris’

’Flower\n Dataset’

We may still have to do some cleaning on the result. For

example, in the example above we still have the line feed

control character \n.

Let us now take a look at other parts of our soup. For

example, let us look at the first div tag:

firstdiv = iris_soup.div

We are storing the content of the div in a variable we can

later use:

advanced data science and analytics with python 71

> firstdiv

<div class="mw-body-content" id="bodyContent">

<p>This is one of the best known datasets in data

science and it is fair to say it has become a

canonical example in the training of

new data scientists.</p>

<p>The data set contains 50 instances of 3 classes

of 50 iris plants. One of the classes is linearly

separable from the other 2, and these in turn are

not linearly separable from each other.</p>

</div>

We can see that there are two paragraphs inside the div. We

This particular div contains two

paragraphs, denoted with <p></p>

tags.

can search the contents of the different tags with the help of

methods such as find and find_all. Let us get the string of

the first paragraph:

The find method locates the first

instance of the tag searched.

> paragraph = firstdiv.find(’p’)

> paragraph.string

’This is one of the best known datasets in data

science and it is\n fair to say it has become

a canonical example in the training of\n new

data scientists.’

The find method has enabled us to search for the first

instance of the p tag. In contrast, we can use the find_all

method to obtain all the instances inside a list. Notice that

72 j. rogel-salazar

find_all lets us search for multiple tags. For instance, if we

wanted all the paragraphs and list items in the document,

we can type the following:

The find_all method locates all

the instances of the tag searched

and returns a list.

> iris_soup.find_all(["p", "li"])

[<p>This is one of the best known datasets in data

science and it is fair to say it has become a

canonical example in the training of new

data scientists.</p>,

<p>The data set contains 50 instances of 3 classes

of 50 iris plants. One of the classes is linearly

separable from the other 2, and these in turn are

not linearly separable from each other.</p>,

sepal length in cm ,

sepal width in cm ,

petal length in cm ,

petal width in cm ,

class: -- 3 values: Iris Setosa, Iris

Versicolour, Iris Virginica ,

<p id="rogel1">[1] Rogel-Salazar, J.

(2017). <i>Data Science and Analytics with

Python</i>. Chapman & Hall/CRC

Data Mining and Knowledge Discovery Series.

CRC Press. <meta content="text/html;

charset=utf-8" http-equiv="Content-Type"/></p>]

It is possible to use the parameter limit in combination

with the find_all method to limit the number of results

returned. This is particularly useful when there is a large

number of entries searched.

advanced data science and analytics with python 73

Combining our search with filtering parameters is a great

way to hone in on the information we are looking for. We

can for example determine that we want all the paragraphs

that have a particular identifier or id:

We can use parameters to search

for specific tags. In this case for

instance we are searching for a

particular id.

> bib = iris_soup.find_all(’p’, id=’rogel1’)

> print(bib)

<p id="rogel1">[1] Rogel-Salazar, J.

(2017). <i>Data Science and Analytics with

Python</i>. Chapman & Hall/CRC

Data Mining and Knowledge Discovery Series.

CRC Press. <meta content="text/html;

charset=utf-8" http-equiv="Content-Type"/></p>

In this case, we are looking for all the paragraphs with

the id rogel1 and we can see that the result is one single

paragraph. Please note that the returned object is a list

of tags. If we wanted to get the text of the first (and only)

element in the list, we can do this with:

The list elements are tag objects.> my_text = bib[0].text

As we have seen, HTML organises the contents of our

webpage. Sometimes, it is useful to define consistent style

elements for different elements of the page under a single

name. This is what a class attribute is used for in HTML. Remember that class is a reserved

word for both HTML and Python.We know that Python is an object-oriented language and

as such it enables us to create “templates” to create objects.

So what happens when we need to look for a class attribute

74 j. rogel-salazar

in our Beautiful Soup with Python? Well, since class is a

reserved word in Python we simply append an underscore

to the HTML attribute as such: class_.

We have enough information for the big finale of this

section: Obtaining the table of data in the Iris website. Note that we are using the

parameter class_ in the code

below.
Inspecting the source code for the page, we can see that the

tag that holds the dataset is a table of class

tableizer-table. We can use this information to find the

table and parse it:

iris_table = iris_soup.find(’table’,

class_=’tableizer-table’)

From Table 2.1 we know that a well-formed HTML table Too many tables!! I can assure

you there is no chance we may

encounter Mr. Creosote in any of

them.

contains rows in tr tags, and the data cells in td tags. Let us

locate all the table rows to start with:

tmp = iris_table.find_all(’tr’)

This returns a list with all the relevant tags. In particular the

first element contains the header of the table and the rest of

the elements correspond to the rows of the dataset:

Remember how we can slice and

dice a list using the colon notation.

first = tmp[0]

allRows = tmp[1:]

We can now extract the text inside each of the data cells. In

the case of the header, the tag is actually a table header, i.e.,

th.

advanced data science and analytics with python 75

headers = [header.text for header in\

first.find_all(’th’)]

> headers

[’Dataset Order’,

’Sepal length’,

’Sepal width’,

’Petal length’,

’Petal width’,

’Species’]

In the code above, we are using a Pythonic way to extract

We are using list comprehension

to extract the relevant text from

the th tags.

the relevant information: List comprehension. We traverse

the list returned by find_all and extract the text as we go

along, each entry is then stored as an element of a list.

As for the values, they are stored in td tags and we can use

a similar technique as in the code above:

We use the same technique as

above for the actual table contents.

values = [[data.text for data in\

row.find_all(’td’)] for row in allRows]

> values[:2]

[[’1’, ’5.1’, ’3.5’, ’1.4’, ’0.2’, ’I.\xa0setosa’],

[’2’, ’4.9’, ’3’, ’1.4’, ’0.2’, ’I.\xa0setosa’]]

Note that the information extracted is actually of string type.

This is important in those cases, such as here, where some

of the data is numerical, and thus we may have to carry

out appropriate manipulations; for example, cleaning the

nonbreakable space characters shown as \xa0.

76 j. rogel-salazar

Let us show some manipulations we can easily implement

loading the data into a Pandas dataframe:

import pandas as pd

df = pd.DataFrame(data=values, columns=headers)

Et voilà! We are now in a position to use our dataset for

other purposes, such as in a classification algorithm as

done in Chapter 3 of Data Science and Analytics with Python5. 5 Rogel-Salazar, J. (2017). Data
Science and Analytics with Python.
Chapman & Hall/CRC Data
Mining and Knowledge Discovery
Series. CRC Press

But before we do that, let us make some minor changes

in our dataset. For example, we can convert the columns

containing numbers as strings into actual numbers:

cols = [’Dataset Order’, ’Sepal length’,

’Sepal width’, ’Petal length’, ’Petal width’]

df[cols] = df[cols].apply(pd.to_numeric,

errors=’coerce’)

We can also clean the strings in the species names. You may

have noticed in the code shown on page 75 that there are

some strange characters in the species names. Namely, the

non-breakable space encoded in latin1: \xa0. Let us clean

up these spaces: We will cover the use of regular

expressions for this sort of task in

Section 2.2.df[’Species’] = df[’Species’].map(lambda x:

x.replace(’\xa0’,’ ’))

df[’Species’] = df[’Species’].map(lambda x:

x.replace(’\n’,’’))

We are simply replacing the nonbreakable spaces with

blanks in the first line of the code above. In the second one,

we are replacing the new line character with nothing.

advanced data science and analytics with python 77

2.2 Make Mine a Regular: Regular Expressions

Have you ever had the need to determine a pattern in I am sure you have! Particularly

if, like Mr. Bounder, you need to

replace the letter “C” with “K”

to get the right pronunciation of

some words.

a piece of text, or in data in a table and either extract the

regular pattern or even remove it? Sometimes, it is possible

to simply scan the document in question and manually find

the expression of interest. In many cases, different programs

enable the use of search and replace functions and they are

all the rage. However, there are times when the expression

we are seeking to process is more complex to be handled

with a simple search.

Welcome to the world of regular expressions! As the name

implies, a regular expression is an utterance (typically in

text form) that appears in a corpus with certain frequency or A corpus is a large and structured

set of texts upon which linguistic

analysis can be performed.
regularity. Recognising those patterns in the corpus relies

on determining the characters that make up the expression,

including letters, digits, punctuation and any other symbol,

including special characters and even in other scripts, such

as the Japanese sentence in the margin, as well as many このは日本語の文章.

others like Chinese, Arabic or Devanagari for example.

In Python, the re module enables us to use regular

expressions. When working with Python strings which will

be parsed with regular expressions, it is recommended to

use raw strings. This is because in raw strings, backslashes A raw string in Python is

preceded by an r as such r’This

is a raw string.’
have no special meaning as an escape character. Anyway, we

mentioned above that a simple search and replace function

can be used to substitute a desired pattern, let us take a look

at implementing this use case with re.

78 j. rogel-salazar

Imagine you are reading the following options from your

local award-winning Viking Café:

The famous Viking Café menu,

sans Spam...

Breakfast options:

1. Egg and baaacon - £10.0 ($12.83);

2. Egg, sausage and baaaaacon - £11.0 ($14.12);

3. Egg and beans - £12.0 ($15.40);

4. Egg, baaacon and beans - £13.0 ($16.68);

5. Beans, sausage, beans - £14.0 ($17.97);

6. Beans, baaaaacon, beans, tomato and beans - £15.0

($19.25);

That new Commis Chef is at it again! Doesn’t she/he know

that your speciality is wonderful Spam!? We need to take

action immediately and change the menu before the Vikings We need to replace the word

“beans” with “spam”.come in. Let us fire our Python engines and read each of the

lines in the corpus above. We will then use the sub method

to substitute the word “beans” for “spam”. We will deal

with the extra bacon — the surplus letter “a” — later.

The string could be stored in a file.

In this case we are defining a raw

string: Notice the r at the start.

import re

corpus = r"""Breakfast options:

1. Egg and baaacon - £10.0 ($12.83);

2. Egg, sausage and baaaaacon - £11.0 ($12.83);

3. Egg and beans - £12.0 ($15.40);

4. Egg, baaacon and beans - £13.0 ($16.68);

5. Beans, sausage, beans - £14.0 ($17.97);

6. Beans, baaaaacon, beans, tomato and beans -

£15.0 ($19.25); """

advanced data science and analytics with python 79

for line in corpus.splitlines():

line = re.sub(’beans’,’spam’, line.rstrip())

print(line)

The sub method enables us to

make substitutions in the string.

As you would expect, after running the code, the printed

new lines will have changed the word “beans” for “spam”:

The famous Viking Café menu,

with wonderful Spam...

Breakfast options:

1. Egg and baaacon - £10.0 ($12.83);

2. Egg, sausage and baaaaacon - £11.0 ($12.83);

3. Egg, and spam - £12.0 ($15.40);

4. Egg, baaacon and spam - £13.0 ($16.68);

5. Beans, sausage, spam - £14.0 ($17.97);

6. Beans, baaaaacon, spam, tomato and spam - £15.0

($19.25)

But what about lines 5 and 6 where the word “Beans” has

As well as with the misspelling of

the word “bacon”.

not been changed? Well, the reason is that in those cases

the capital “B” does not match the lower case “b”. We shall

address how to deal with this issue in the next subsection.

Also, note that we have not changed the text in the corpus

variable; we simply took the text and made on-the-fly This is a nice task for you to

complete now, Mr./Ms. Commis

Chef!
modifications. If we need to keep the changes, we need to

make sure that the new lines are stored somewhere.

2.2.1 Regular Expression Patterns

As you can see, looking for sequences of characters is
Exceptions include control

characters such as + ? . *

ˆ { } $ () [] | \.

pretty straightforward as most characters match themselves.

Sounds obvious, right? However, there are some exceptions:

80 j. rogel-salazar

These characters can be matched by “escaping” them with

the help of a backslash (\). In Table 2.2 we are listing the

use of these characters to match patterns in a string.

Pattern Description

ˆ...$ Starts and ends

* Zero or more repetitions
+ One or more repetitions
? Optional character
. Any character
abc... Letters
123... Digits
\d Any digit
\D Any non-digit character
[abc] Only a, b, or c
[ˆabc] Not a, b, nor c
[a-z] Characters a to z

[0-9] Numbers 0 to 9
\w Any alphanumeric character
\W Any non-alphanumeric character
{m} m repetitions
{m,n} m to n repetitions
\s Any whitespace
\S Any non-whitespace character
[...] Character sets
(...) Capture group
(:?...) Non-capture group
(a(bc)) Capture sub-group
(.*) Capture all
(123|abc) Matches 123 or abc

Table 2.2: Regular expression
patterns. We use ellipses (...) to
denote sequences of characters.

The re module we encountered previously supports two We can use match or search with

the re module.different ways to find patterns using regular expressions:

match and search. The first one matches only at the

advanced data science and analytics with python 81

beginning of a string, whereas the second one searches for a

match anywhere in the string. If you are interested in using We can use compile in cases where

we need to use an expression

multiple times.
a single regular expression multiple times, you may want to

use the compile method to be used with match and search.

OK, so we are ready to start matching some patterns in our

Viking Café menu. We can match lines beginning with a

number using an expression such as:

The caret symbol (ˆ) matches

a pattern at the beginning of a

string.

’^1’, ’^2’, ..., ’^6’

What about if we are interested in a more general

expression that captures a line starting with any number?

From Table 2.2 we can see that the pattern \d matches any

digit!

\d matches any single digit.’^\d’

So we can actually write the following to print all the lines

that start with a number:

This piece of code prints lines

in the corpus that begin with a

number.

numlines = re.compile(’^\d’)

for line in corpus.splitlines():

result = numlines.search(line)

if result:

print(line)

Try it out and convince yourself that the outcome is as

expected. Note that this only works for strings that begin

with the pattern provided.

We can also search for lines ending in a particular pattern.

In this case, we need to use the dollar sign ($). For example,

82 j. rogel-salazar

if we wanted to print only the lines that finish with a closing

parenthesis, we will have to write the following regular

expression:

The dollar sign ($) matches a

pattern at the end of a string.
endparenthesis = re.compile(’\)$’)

Note that we need to “escape” the closing parenthesis, i.e.,

\), to match expressions containing that character. The same

behaviour applies to any of the other control characters we

have described above.

Remember the task we were trying to accomplish in the

last section? We were interested in replacing all the “beans” The square brackets represent

character sets, the pattern [123]

matches a single 1, 2 or 3 and

nothing else. It is possible to

match sequential characters: [0-9]

will match a single digit between 0

and 9.

for “spam”, but capitalised words were not replaced. One

way (among many) to deal with this is the use of character

sets such that we search for the word “bean” spelled either

with “B” or with “b”. We can do that with the following

expression ’[Bb]eans’

In this case we are using [Bb]eans

to match the words “beans” or

“Beans”.

> for line in corpus.splitlines():

line = re.sub(’[Bb]eans’,’spam’, line.rstrip())

print(line)

Breakfast options:

1. Egg and baaacon - £10.0 ($12.83);

2. Egg, sausage and baaaaacon - £11.0 ($12.83);

3. Egg and spam - £12.0 ($15.40);

4. Egg, baaacon and spam - £13.0 ($16.68);

5. spam, sausage, spam - £14.0 ($17.97);

6. spam, baaaaacon, spam, tomato and spam - £15.0

($19.25)

advanced data science and analytics with python 83

What about if we wanted to match all the words that started

with the letter “b”, either capital or lower case? We can

achieve this with the help of \w which matches any
The pattern \w matches any

alphanumeric character.

alphanumeric character. In order to ensure that we capture

words of any length, we can use the + character that will
Whereas the + matches one or

more repetitions of a character.
match one or more repetitions. This leaves us with the

following expression:

bwords = re.compile("[Bb]\w+")

Let us use this compile regular expression with another

great method in the re module: findall which will return a

list with all the matches for the pattern provided:

We find all the matches for words

starting with “B” or “b” .

> bwords.findall(corpus)

[’Breakfast’, ’baaacon’, ’baaaaacon’,

’beans’, ’baaacon’, ’beans’,

’Beans’, ’beans’, ’Beans’,

’baaaaacon’, ’beans’, ’beans’]

Not bad, eh? We can use the repetition to capture all those

misspelled “bacons”:

Here we look for all the words

that have a “b” followed by any

number of letters “a”.

> re.findall(’ba+\w+’, corpus)

[’baaacon’, ’baaaaacon’, ’baaacon’, ’baaaaacon’]

In this case we are searching for all the words that have the

letter “b” followed by any number of letters “a”, and any

number of other characters. We can also specify the number

of repetitions as follows:

84 j. rogel-salazar

re.findall(’ba{3,5}con’, corpus)

In this case we are looking for repetitions of the letter “a”

between 3 and 5 times followed by the letters “con”.

For the next pattern, let us get the prices in sterling from the The use of parentheses lets us

specify a group in the pattern that

we are interested in extracting.
menu. We are interested in the figures after the pound

sterling symbol (£), so we will use the parentheses to

capture the group (see Table 2.2).

> re.findall(’£(\d+\.0)’, corpus)

[’10.0’, ’11.0’, ’12.0’, ’13.0’, ’14.0’, ’15.0’]

Here we are looking for any number of digits (\d+) followed

by a dot (\.) and a zero. Notice that we enclose the We use \. to specify a dot in

the pattern. On its own, a dot is

a wildcard that represents any

character.

expression in parentheses to capture only the information

required, leaving out the pound symbol. For the prices in

dollars, we need to make sure to escape the dollar sign and

the parentheses:

We need to escape both the dollar

sign ($) and the parentheses.

> re.findall(’\(\$(\d+\.\d+)\)’, corpus)

[’12.83’, ’12.83’, ’15.40’, ’16.68’, ’17.97’,

’19.25’]

Finally, let us use the capture sub-group to get both prices at

the same time:

prices = re.compile(’(£(\d+\.0) \(\$(\d+\.\d+)\))’)

captures = prices.findall(corpus)

advanced data science and analytics with python 85

The result will be list with tuples containing a match for the

entire expression (e.g., ’£10.0 ($12.83)’), a match for the We can use the sub-group pattern

(a(bc)) to capture multiple

groups of interest.
first sub-group (e.g., ’10.0’) and a match for the second

sub-group (e.g., ’12.83’). We can then use the resulting list

for our own purposes, for example:

> for capture in captures:

print(’{0} in pounds and {1} in dollars’.

format(capture[1], capture[2]))

10.0 in pounds and 12.83 in dollars

11.0 in pounds and 12.83 in dollars

12.0 in pounds and 15.40 in dollars

13.0 in pounds and 16.68 in dollars

14.0 in pounds and 17.97 in dollars

15.0 in pounds and 19.25 in dollars

The Commis Chef can now use her/his newly acquired

knowledge of regular expressions to fix the menu:

This is one way the Commis Chef

can fix the menu!

fix_bacon = re.compile(’ba+con’)

fix_spam = re.compile(’[Bb]eans’)

new_corpus = ’’

for line in corpus.splitlines():

line = fix_bacon.sub(’bacon’, line)

line = fix_spam.sub(’spam’, line)

new_corpus += line

First we create regular expressions to find the misspelled

words with multiple letters “a”, then one to find the words

“beans” and “Beans”. We then parse each line making

86 j. rogel-salazar

appropriate replacements and saving the new fixed lines in

a new corpus.

Et voilà!

> print(new_corpus)

Breakfast options:

1. Egg and bacon - £10.0 ($12.83);

2. Egg, sausage and bacon - £11.0 ($12.83);

3. Egg and spam - £12.0 ($15.40);

4. Egg, bacon and spam - £13.0 ($16.68);

5. spam, sausage, spam - £14.0 ($17.97);

6. spam, bacon, spam, tomato and spam - £15.0

($19.25)

It is not quite perfect yet, as we have some instances of

“spam” that should really be capitalised, but getting there.

Check out re’s documentation for further information6, 6 re - Regular
expression operations.
https://docs.python.org/3.6/
library/re.html

as there are many more things you can do with regular

expressions. Python also has other tricks under its sleeve.

For example, there are some flags that you can set:

Some flags you can set to be used

with your regular expressions.

• re.IGNORECASE: case insensitive pattern matching

• re.DOTALL: Make the special character . match any

character including newline (\n)

• re.MULTILINE: make ˆ and $ match at the beginning/end

of the string and of each line

Do not be discouraged by how cryptic some of the regular

expressions seem to be. The vast majority of us will

probably not become master regex ninja Jackalopes, but

https://docs.python.org/3.6/library/re.html
https://docs.python.org/3.6/library/re.html

advanced data science and analytics with python 87

with the help of a cheat sheet like Table 2.2 and an online

tester such as https://pythex.org or https://regex101.com,

we can all find the perfect match.

There are some interesting attempts to make readable and

maintainable regular expressions such as cursive_re for

Python 3.6 and up7. For instance, matching the prices in 7 Cursive Re.
https://github.com/Bogdanp/
cursive_resterling from our Viking Café menu can be achieved as

follows with cursive_re:

import cursive_re as cre

pound = cre.text(’£’)

pndnum = pound + cre.group(cre.one_or_more(

cre.any_of(cre.in_range(’0’,’9’))) +

cre.text(’.0’))

In the second line above, text matches the given string

exactly, escaping any special characters. The any_of function Cursive Re provides a number of

functions that attempt to make

regular expressions easier to read

and maintain.

matches any of the given characters and in this case they

are characters in the range from 0 to 9. Since we want one

or more of these digits, we use the one_or_more function.

Finally, the group function lets us define the group whose

contents we want to retrieve. We can see the result of these

commands by casting the result as a string:

> str(pndnum)

’\\£([0-9]+\\.0)’

We can compile the expression into a real regular expression

and use it as normal:

https://github.com
https://github.com
https://regex101.com
https://pythex.org

88 j. rogel-salazar

> testing = cre.compile(pndnum)

> testing.findall(corpus)

[’10.0’, ’11.0’, ’12.0’, ’13.0’, ’14.0’, ’15.0’]

2.3 Processing Text with Unicode

When dealing with text data, it is unavoidable to

consider the characters that we use to represent words. We

rarely think about this, but ever since we start learning how

to read and write, we are encoding information particular to

the natural language we use in our everyday lives. You are

able to read these lines of text because you are familiar with

the Latin alphabet with 26 characters that is used in English,

but that is not the whole story. Si leyeras estas líneas en If you were reading these lines

in Spanish you would need 27

characters plus accented vowels.
Español necesitarías 27 caracteres, más vocales acentuadas como:

á, é, í, ó, ú, & ü. Other languages have their own letters and

they all need to be encoded so that they can be represented

by your computer.

For many decades, computers were able to represent

characters based on the American Standard Code for

Information Interchange standard, better known as ASCII,

first proposed in the early 1960s8. ASCII defines 256 8 Russell, A. (2014). Open Standards
and the Digital Age. Cambridge
Studies in the Emerg. Cambridge
University Press

characters using 8 bits to encode characters including the

usual printable ones in a Latin alphabet including accented

vowels and other characters such as ç, ß and ñ (among

others), plus some control characters such as carriage return,

line feed, etc.

advanced data science and analytics with python 89

All this is well and good, but what happens with languages Languages with non-Latin scripts

are not supported in ASCII.that do not use the Latin alphabet such as Japanese, Chinese,

or Greek? ASCII would not be able to accommodate these

scripts and thus we need a new character set. Welcome to

Unicode!

Unicode does not have every imaginable character in it,

but at least in version 11.0 there are 137, 375 characters

including 146 different scripts and even emojis9. This all 9 Unicode 11.0.
http://www.unicode.org/
versions/Unicode11.0.0/makes sense and you would think that this is the end of

the story, right? Well, you will be surprised to see the “It’s...

not”. There are different ways to implement Unicode such
No need to run in from the sea to

tell you this.as the Unicode Transformation Format (UTF), and the

Universal Coded Character Set (UCS).

Let us take for instance UTF encoding. If we chose to use

8 bits to do the encoding we would end up with UTF-8,

which offers great compatibility with ASCII. Alternatively, Some common encodings include

UTF-8 and UTF-16.we can use 16 bits and end up with UTF-16. There are other

mappings out there, including UTF-32, UTF-7, etc. As you

can imagine, dealing with encodings can be a bit tricky.

In Python 3, all text is Unicode10, but it is important to 10 van Rossum, G. (2009). Text Vs.
Data Instead of Unicode Vs. 8-bit.
https://docs.python.org/release/3.0.1/
whatsnew/3.0.html

remember that encoded Unicode is represented by binary

data. This is one of the main differences with Python 2.7.

Python 3 has one text type, i.e, str which holds Unicode

data, and there are two byte types bytes and bytearray. Let

us take a look at some of this. For example, let us define a

string in Python and look at its type:

https://docs.python.org/release/3.0.1/whatsnew/3.0.html
http://www.unicode.org
https://docs.python.org/release/3.0.1/whatsnew/3.0.html
http://www.unicode.org

90 j. rogel-salazar

> type(’Hello world!’)

str

It is indeed an object of str type, or a string. What about if

A string is indeed a string.

we want to define a bytes literal? Well, we can simply prefix

the string with a b:

We can define a bytes literal with

the b prefix.

> type(b’Hello world!’)

bytes

Let us try to define a byte object containing non-ASCII

characters:

In this case, we are printing “Hello

world!” in Japanese!
> type(b’こんにちは世界！’)

SyntaxError: bytes can only contain ASCII literal

characters.

This error tells us that we will need to transform our string

with non-ASCII characters into a bytes object first, and we

will need to provide an encoding to do this:

When casting as a bytes literal

we need to specify the desired

encoding.

> sekai = ’こんにちは世界！’

> bytes(sekai, ’utf-8’)

b’\x81\x93\xe3\x82\x93\xe3\x81\xab\xe3\x81\xa1\xe3

\x81\xaf\xe4\xb8\x96\xe7\x95\x8c\xef\xbc\x81’

There is no easy way to determine what type of encoding is

used in byte strings. In Section 2.1.1 we learnt how to scrape

advanced data science and analytics with python 91

a website, and in reality we need to check what encoding It is best practice to specify the

encoding when reading files, but it

may not be that easy to tell what

encoding has been used.

is used for the strings we are getting from the web. That

is true of any other processing we need to carry out with

strings.

After the operation above is executed, we have a bytes

object encoded in UTF-8. Another, and probably better, way

to do this is to use the encode method for strings:

A better way to deal with the

encoding is to use the encode

method.

> sekai.encode()

b’\x81\x93\xe3\x82\x93\xe3\x81\xab\xe3\x81\xa1\xe3

\x81\xaf\xe4\xb8\x96\xe7\x95\x8c\xef\xbc\x81’

As you can see, we have obtained the same result as before,

please note that by default Python 3 uses UTF-8 for

encoding. Should we need to use a different encoding, we

simply pass it to the method. For example, we can encode

our string in UTF-16 as follows:

You can specify other encodings

too.
> sekai.encode(’utf-16’)

b’\xff\xfeS0\x930k0a0o0\x16NLu\x01\xff’

As you can imagine, it is possible to do the reverse

operation and decode bytes objects too:

We can decode a bytes literal too.> japan = b’\xe6\x97\xa5\xe6\x9c\xac’

> japan.decode()

’日本’

92 j. rogel-salazar

Please remember that you will need to provide the correct

encoding (UTF-8, UTF-16, etc.) to the decoding method; Providing the correct encoding is

important.otherwise, you will get a Unicode error at best or a miss-

encoding at worst!

Since we are dealing with characters, and all text in Python

3 is Unicode, it makes sense that the regular expression The use of regular expressions

patterns can be applied to Unicode

too.
patterns that we discussed in Section 2.2 also hold for non-

Latin characters:

> thirtyseven=’さんじゅなだ’’

> re.sub(’だ’’, ’な’’, thirtyseven)

’さんじゅなな’

It is also possible to use the \uFFFF Unicode notation, This is a hexadecimal

representation for the Unicode

character.
enabling us to use character ranges and all the fun that

comes with regular expressions:

> re.sub(’\u3060’, ’\u306a’, thirtyseven)

’さんじゅなな’

You can check the Unicode code points in sites such as Check Unicode tables in sites

such as www.utf8-chartable.de or

www.key-shortcut.com.
www.utf8-chartable.de or www.key-shortcut.com for

example.

In Section 2.1.1 we read an HTML page and we encountered

some interesting non-breakable spaces shown as \xa0. It

turns out that these are non-breakable spaces encoded in

Latin1 or ISO−8859 − 1. We dealt with this issue with a

http://www.key-shortcut.com
http://www.utf8-chartable.de
http://www.key-shortcut.com
http://www.utf8-chartable.de

advanced data science and analytics with python 93

replacement in Pandas. An alternative may be to use a

regular expression to remove all non-US-ASCII characters,

i.e., characters outside the \u0000-\u007F.

Here we are removing characters

outside the range of US-ASCII

characters.

> test_text=’abc\xa0\u3060\u306a\u3060\xa0de!’

> print(test_text)

abcだなだ de!

> only_ascii = re.compile(r’[^\u0000-\u007f]’)

> only_ascii.sub(’’, test_text)

’abcde!’

Notice that when printing the string there are some blank

spaces between the Latin and Japanese characters. In this

case, we are using an exclusion in a character set to remove

all non-US-ASCII characters. It is a drastic measure, but I

Remember that [ˆabc] means not

a, b nor c.

am sure you get the point.

As you can imagine, it is not unusual to to come across

encoding problems when opening files in Python 3, and

there are some modules that may help with these issues.

Say you are interested in opening a CSV file to be loaded Python 3 uses UTF-8 as default.

You may need to specify the file

encoding to ensure appropriate

handling for other encodings.

into a Pandas dataframe. If the stars align and the creator

of your CSV is magnanimous, they may have saved the file

using UTF-8. If so you may get away with reading the file as

follows:

94 j. rogel-salazar

import pandas as pd

df = pd.read_csv(’myfile.csv’)

As we mentioned before, it is not easy to tell what encoding

was used to create a file and in principle you should pass In Pandas you can provide an

encoding parameter.a parameter to Pandas telling it what encoding the file has

been saved with, so a more complete version of the snippet

above would be:

import pandas as pd

df = pd.read_csv(’myfile.csv’, encoding=’utf-8’)

What happens when you do not know what encoding

was used to save the file? Well, you can ask, but it is very

unlikely that the file creator would know or tell you. . . In

those cases, modules such as chardet11 can help you detect 11 Chardet.
https://chardet.readthedocs.io

the character encoding in your file. The detect function

in the module returns a dictionary containing the auto-

detected character encoding and a confidence level from 0 to

1.

In this case, the string is detected

to be encoded in ISO−8859 − 1.

> import chardet

> chardet.detect(b’I.\xa0setosa’)

{’encoding’: ’ISO-8859-1’, ’confidence’: 0.73’}

The example above tells us that the likely encoding for the

string passed to the detect function is ISO−8859 − 1 (with

a confidence level of 0.73). Let us take a look at an example

implementation for a file:

https://chardet.readthedocs.io

advanced data science and analytics with python 95

import chardet

import pandas as pd

def find_encoding(fname):

r_file = open(fname, ’rb’).read()

result = chardet.detect(r_file)

charenc = result[’encoding’]

return charenc

my_encoding = find_encoding(’myfile.csv’)

df=pd.read_csv(’myfile.csv’, encoding=my_encoding)

Finally, what about writing a file with the correct encoding?

Use this snippet to detect file

encodings with chardet.

Well, if you are using Pandas, it is quite straightforward as

you simply pass a parameter with the desired encoding as Or nothing, as the default is

UTF-8.follows:

> df.to_csv(’newfile.csv’, encoding=’utf-8’)

Otherwise, you need to ensure the encoding of the strings as

you write them down:

Do not forget to encode your

strings when writing to a file, and

tell your users!

sekai = "こんにちは世界！"

with open(’sekai.txt’, ’wb’) as f:

f.write(sekai.encode())

96 j. rogel-salazar

2.4 Tokenising Text

We have been dealing with text in full, and most of

our discussion has been about obtaining and pre-processing

it. We started this chapter talking about the importance

of natural language and how to make sense of it with the In this context, a token is a

meaningful unit of text.aid of computers. One of the first tasks that will enable us

to do this is to split up our text into meaningful units, or

tokens. This is called tokenisation and it is a typical first step

in natural language processing.

In languages like English or Spanish, simple tokenisation

can be used by separating the tokens by whitespaces.

Unfortunately, for languages such as Chinese or Japanese, A common tokenisation technique

involves separating tokens by

whitespaces.
where whitespaces are not used between words, the

tokenisation tasks becomes more involved. The tokenisation

process may also require to discard some tokens such as

punctuation, numbers, or some common words. We will

cover more of this later on in this section.

We can readily split a string of text as follows:

We can separate tokens with the

split method for strings.

> sentences = "I know, I know! Nobody expects the

Spanish Inquisition. In fact, those who do

expect -"

> sentences.split()

[’I’, ’know,’, ’I’, ’know!’, ’Nobody’, ’expects’,

’the’, ’Spanish’, ’Inquisition.’, ’In’, ’fact,’,

’those’, ’who’, ’do’, ’expect’, ’-’]

advanced data science and analytics with python 97

We could in principle also define a string of characters on

which to split the sentence. For example, if we wanted to

split on the comma, we can do the following:

We can also specify other

separators for splitting.
> sentences.split(’,’)

[’I know’,

’ I know! Nobody expects the Spanish Inquisition.

In fact’,

’ those who do expect -’]

You may notice that in the first example, the punctuation

marks are joined to the words, and in the second one there

are some whitespaces at the beginning of the second and

third elements in the list. We can use regular expressions

to split on the desired marks, in this case for instance on

comma, exclamation mark, dot, hyphen and whitespaces:

We can even use a regular

expression to specify the

separator!

> import re

> re.split(’[,!\.\-\s]+’,sentences)

[’I’, ’know’, ’I’, ’know’, ’Nobody’, ’expects’,

’the’, ’Spanish’, ’Inquisition’, ’In’, ’fact’,

’those’, ’who’, ’do’, ’expect’, ’’]

There are other ways to start our processing of natural

language and a package that comes to mind in this context Do check out what NLTK has to

offer!is the Natural Language Toolkit, or NLTK for short. Word

tokenisation can be done with the word_tokenize function:

98 j. rogel-salazar

> import nltk

> nltk.word_tokenize(sentences)

[’I’, ’know’, ’,’, ’I’, ’know’, ’!’, ’Nobody’,

’expects’, ’the’, ’Spanish’, ’Inquisition’, ’.’,

’In’, ’fact’, ’,’, ’those’, ’who’, ’do’, ’expect’,

’-’]

Furthermore, we can use NLTK to tokenise at a sentence

Word tokenisation can be easily

done with NLTK’s word_tokenize.

level:

Whereas sentence tokenisation is

handled with sent_tokenize.

> nltk.sent_tokenize(sentences)

[’I know, I know!’,

’Nobody expects the Spanish Inquisition.’,

’In fact, those who do expect -’]

As we can see, in this case we end up with a list with three

sentences. Not bad!

We can now start to normalise the text so that we can match

tokens despite some differences such as the use of capital We can normalise the text so that

we can match tokens that may

be different in form but not in

meaning

letters (cat, Cat and CAT can be assumed to refer to the

same friendly Über-being.) or inflections (cat, cat’s, cats

and cats’ all come from the same common base cat). It is

possible to use the lower method to deal with the use of

capital letters:

> words = nltk.word_tokenize(sentences.lower())

We can take a look at the result of the tokenisation:

advanced data science and analytics with python 99

> print(words)

[’i’, ’know’, ’,’, ’i’, ’know’, ’!’, ’nobody’,

’expects’, ’the’, ’spanish’, ’inquisition’, ’.’,

’in’, ’fact’, ’,’, ’those’, ’who’, ’do’, ’expect’,

’-’]

To deal with inflections, we can use stemming or

In this case, we have changed all

the text into lowercase.

lemmatisation. The former refers to the process of severing

word endings, whereas the latter relies on a more systematic Lemmatisation and stemming can

help us normalise the text too.analysis to obtain the so-called lemma, or dictionary form, of

a word. NLTK comes with a couple of stemmers, such as

the Porter stemmer:

An example of stemming text with

PorterStemmer.

> porter = nltk.PorterStemmer()

> [porter.stem(word) for word in words]

[’i’, ’know’, ’,’, ’i’, ’know’, ’!’, ’nobodi’,

’expect’, ’the’, ’spanish’, ’inquisit’,’.’, ’in’,

’fact’, ’,’, ’those’, ’who’, ’do’, ’expect’, ’-’]

Lemmatisation can be done with WordNetLemmatizer:

Lemmatising can be done with

WordNetLemmatizer.

> lemmatiser = nltk.WordNetLemmatizer()

> [lemmatiser.lemmatize(word) for word in words]

[’i’, ’know’, ’,’, ’i’, ’know’, ’!’, ’nobody’,

’expects’, ’the’, ’spanish’, ’inquisition’, ’.’,

’in’, ’fact’, ’,’, ’those’, ’who’, ’do’, ’expect’,

’-’]

100 j. rogel-salazar

Another useful thing that comes with NLTK is the

regexp_tokenize function with similar functionality to Tokenisation can also be

done with the help of regular

expression.
re.findall, but efficient for the tokenisation task. It

becomes particularly useful in the tokenisation of utterances

in social media such as tweets. For example, lets take the

following made-up tweet:

@norwegian_blue This parrot is no more!!! :(#sad

https://jrogel.com

If we use the tokeniser straight out of the box, we end up

with some tokenisations that are no longer meaningful in

the context of a tweet:

Using the tokeniser straight

out of the box results in a bad

tokenisation.

> tweet=’@norwegian_blue This parrot is no more!!!

:(#sad... https://jrogel.com’

> nltk.word_tokenize(tweet)

[’@’, ’norwegian_blue’, ’This’, ’parrot’, ’is’,

’no’, ’more’, ’!’, ’!’, ’!’, ’:’, ’(’, ’#’, ’sad’,

’...’, ’https’, ’:’, ’//jrogel.com’]

It may be preferable to parse the text so as to render a

meaningful tokenisation. We can use regular expressions to

do this, and in particular, we can use the regexp_tokenize

function that comes with NLTK offering consistency with

other NLTK functions. Also it may provide some efficiencies

when parsing for the desired pattern. It is important to note

that the order of the arguments in the regexp_tokenize

function is as follows: First the string to be parsed and then

the regular expression. We shall put together a sequence

re functions take their arguments

in the reverse order.

of regular expressions that break our strings in the chosen

manner.

https://jrogel.com%E2%80%99
https://jrogel.com

advanced data science and analytics with python 101

Let us then define a regular expression pattern that enables

a more meaningful tokenisation for our example tweet

above:

Looks complex, but we shall

unravel the regexp line-by-line

below.

pattern = r’’’(?x) # A verbose regex

[\$£]?\d+[\.:%]?\d*%?

|(?:[A-Z]\.)+

|(?:https?://)?(?:\w+\.)(?:\w{2,})+(?:[\w/]+)?

|[@\#]?\w+(?:[-’]\w+)*

|\.\.\.

|[!?]+

|:[()]’’’

The first line in our regular expression starts with (?x)

which lets the parser know that we are defining a verbose

regular expression. This lets us create a more readable

pattern and even include comments with #. The next line, A lot of useful information here.

Make sure you check out the

regular expression patterns in

Table 2.2.

[\$£]?\d+[\.:%]?\d*%? captures decimal numbers,

percentages and currency figures (in this case dollars $, or

pounds £). We then use (?:[A-Z]\.)+ to obtain

abbreviations where characters are separated by dots. The

fourth line captures URLs and the next one deals with @

mentions and hashtags (#). We capture ellipses with \.\.\.

and multiple exclamation and question marks with [!?]+.

Finally, we capture a couple of ASCII emoticons such as :)

and :(with :[()].

We can now try our new shiny pattern on the example tweet

we have used before:

102 j. rogel-salazar

> nltk.regexp_tokenize(tweet, pattern)

[’@norwegian_blue’, ’This’, ’parrot’, ’is’, ’no’,

’more’, ’!!’, ’:(’, ’#sad’, ’...’,

’https://jrogel.com’]

This has broken down the tweet in a more meaningful way,

This is a much better tokenisation

of the sample Tweet!!

where we can distinguish hashtags (#sad) , user mentions

(@norwegian_blue), and even emoticons. This sort of task

is so common that NLTK has a tweet tokeniser that can be

used out of the box:

Check out the TweetTokenizer

that comes with NLTK.

> from nltk.tokenize.casual import TweetTokenizer

> TweetTokenizer().tokenize(tweet)

[’@norwegian_blue’, ’This’, ’parrot’, ’is’, ’no’,

’more’, ’!’, ’!’, ’:(’, ’#sad’, ’...’,

’https://jrogel.com’]

You can see some differences in the results compared to

those from our own pattern. The flexibility offered by using

either pattern depends on our particular use case.

2.5 Word Tagging

Now that we are able to tokenize a corpus and break it

down into its (meaningful) components, we can turn our

attention to the categorisation of those units. For instance,

we can try to distinguish between verbs, adjectives and

https://jrogel.com%E2%80%99
https://jrogel.com%E2%80%99

advanced data science and analytics with python 103

nouns and start making sense of the utterances in the

corpus.

Categorising the words into the parts they play in the

speech is imaginatively called Part-Of-Speech tagging, or POS Part-Of-Speech tagging

categorised the words into the

parts they play in a sentence.
tagging. NLTK lets us carry out POS tagging with the

post_tag function. Lets take a look using the corpus

sentences we defined in Page 96. For the purposes of this

example, we will concentrate on the second sentence, i.e.,

“Nobody expects the Spanish Inquisition”:

A POS tagged sentence with

NLTK.

s = nltk.sent_tokenize(sentences)

s1 = nltk.word_tokenize(s[1])

> nltk.pos_tag(s1)

[(’Nobody’, ’NN’),

(’expects’, ’VBZ’),

(’the’, ’DT’),

(’Spanish’, ’JJ’),

(’Inquisition’, ’NNP’),

(’.’, ’.’)]

We can see that “Nobody” is a noun (NN), “expects” is a You can look at the

definitions of the tags using

nltk.help.upenn_tagset() and

pass the tag as an argument.

verb in the present tense (VBZ), “the” is a determiner (DT),

“Spanish” is an adjective (JJ) and “Inquisition” is a proper

noun (NNP).

We can put all this together and analyse a larger corpus

than the ones we have been dealing with so far. Let us take

a look at one of the first speeches made by Barack Obama

back in 2009. We will carry out the following steps:

104 j. rogel-salazar

1. Visit The American Presidency Project website https://www.presidency.ucsb.edu

2. Scrape the speech from the “Address Before a Joint

Session of the Congress” from February 24th, 200912 12 Address Before a Joint
Session of the Congress. Barack
Obama. 44th President of
the United States: 2009-2017.
https://www.presidency.ucsb.edu/
node/286218

3. Save the speech to a local plain text file

4. Parse the sentences of the speech

5. Run some POS and determine the top named entities in

the speech

It sounds like something we can definitely do. So let us Yes, we can!

get started by reading the speech page and loading it into

Beautiful Soup:

wp=’https://www.presidency.ucsb.edu/node/286218’

pageSource = urlopen(wp).read()

pa2009 = BeautifulSoup(pageSource, ’lxml’)

We can now find the place where the actual speech is

located. In this case, it is in a div with class Remember that if the page source

changes, this code will need to be

adapted accordingly.
field-docs-content inside another div with class

main-container container, yes... two containers... We are

interested in all the paragraphs and therefore we use the

find_all method to obtain them:

Refer to Section 2.1 for the use of

Beautiful Soup.

maincontainer = pa2009.find(’div’,

class_=’main-container container’)

content = maincontainer.find(’div’,

class_=’field-docs-content’)

content_p = content.find_all(’p’)

https://www.presidency.ucsb.edu
https://www.presidency.ucsb.edu
https://www.presidency.ucsb.edu
https://www.presidency.ucsb.edu

advanced data science and analytics with python 105

Now that we have the paragraphs, we can get the text and

start cleaning it. For example, we need to get rid of heading

and trailing spaces, as well as joining the paragraphs in a

single string:

paragraphs = [p.get_text().strip() for p in

content_p]

speech = ’ \n’.join(paragraphs)

We can now use this string to write the text to a file:

We are concatenating all the

paragraphs, leaving a new line in

between them.

with open(’obama2009.txt’, ’wb’) as f:

f.write(speech.encode())

It is possible now to separate each of the sentences in the We use sentence tokenisation to

separate each of the sentences in

the speech.
speech:

sentences = nltk.sent_tokenize(speech)

and obtain the word tokens that can be POS tagged:

Finally we tokenise each of the

sentences and POS tag the tokens

we have obtained.

tokenized_sentences = [nltk.word_tokenize(sentence)

for sentence in sentences]

tagged_sentences = [nltk.pos_tag(sentence) for

sentence in tokenized_sentences]

So far so good! We now have tagged sentences and we

could take a look at those to obtain the nouns mentioned in

the speech. However, we are interested in more than simply

getting all the nouns. We would like to get those named

entities that are the subject of the sentences, in other words

the protagonists of the speech. To that end, we will use

106 j. rogel-salazar

a technique called chunking, which is a process to extract Chunking lets us extract phrases

from unstructured text, and in this

case obtain named entities.
phrases from unstructured text. In this way, a phrase such

as “United States” becomes a single entity instead of ending

up with two separate words “United” and “States”.

As it is the case with POS tagging, there are standard chunk

tags that can be obtained, such as Noun Phrases (NP),

Verb Phrases (VP) and Named Entities (NE) for example.

In NLTK we can use the ne_chunk_sents which uses a

maximum entropy (MaxEnt) classifier using data from the

ACE (Automatic Content Extraction)13 corpus. The ACE 13 ACE 2004 Multilingual
Training Corpus.
https://catalog.ldc.upenn.edu/
LDC2005T09

corpus has been manually annotated for named entities.

The named entity chunker uses the following features to

predict NEs, among others:

These are some of the features

that determine a named entity in

NLTK.

• Capital letters, no numbers in the word

• Word length

• First and last three letters of the word

• POS tag

• Dictionary words

• POS tags of the preceding and following words

Let us determine the named entities in the tagged sentences

from Obama’s speech:

We are using NLTK’s

ne_chunk_sents to chunk the

sentences.

chunked_sentences = nltk.ne_chunk_sents(

tagged_sentences, binary=True)

In this case, binary=True lets NLTK know that we want

to use the binary named entity chunker. The result is a

https://catalog.ldc.upenn.edu
https://catalog.ldc.upenn.edu

advanced data science and analytics with python 107

generator with Tree objects. In this context, a tree is a

hierarchical grouping of syntactical elements that make up a

natural language utterance.

A Tree consists of a node value which is typically a string

label and a Python iterable object comprising the node’s

children which in turn can also be Tree objects themselves.

Let us look at an example with the sentence shown in

Figure 2.4.

Figure 2.4: A chunked sentence
with two named entities.The sentence has two named entities, i.e., “Nobody” and

“Spanish Inquisition”, one verb in the present tense

(“expects”) and a definite article (“the”). We can recreate

that Tree in NLTK as follows:

The Tree structure of the chunked

sentence shown in Figure 2.4.

from nltk.tree import Tree

ne1 = Tree(’NE’, [(’Nobody’, ’NN’)])

ne2 = Tree(’NE’, [(’Spanish’, ’JJ’),

(’Inquisition’, ’NNP’)])

s = Tree(’S’, [ne1, (’expects’, ’VBZ’),

(’the’, ’DT’), ne2])

In this case, we can see that the first named entity is a tree

labelled NE and the token is appropriately tagged as a noun

108 j. rogel-salazar

(NN). With this knowledge, let us write a function that parses

the Tree recurrently and gets the entity names in a chunked

sentence:

def get_entity_names(tree):

entity_names = []

if hasattr(tree, ’label’) and tree.label:

if tree.label() == ’NE’:

entity_names.append(’ ’.join([child[0]

for child in tree]))

else:

for child in tree:

entity_names.extend(

get_entity_names(child))

return entity_names

We can finally apply our function to the speech we are

A function to extract named

entities from a given Tree.

analysing:

We extract the named entities

from the speech using the function

above.

entity_names = []

for tree in chunked_sentences:

entity_names.extend(get_entity_names(tree))

> entity_names[-5:]

[’South Carolina’, ’American’, ’God’,

’United States’, ’America’]

Let us finish this section by creating a dataframe with the

data obtained and determine the top 10 named entities by

frequency of mentions in the speech made by Obama in

2009 before a Joint Session of the Congress:

advanced data science and analytics with python 109

from collections import Counter

import pandas as pd

data_names = Counter(entity_names)

df = pd.DataFrame(list(data_names.items()),

columns=[’Entity Name’, ’Freq’])

df.set_index(’Entity Name’, inplace=True)

We can see the top 10 named entities in the speech in Figure

The named entities can be loaded

into a Pandas dataframe and be

analysed.

2.5.

Figure 2.5: Top 10 named entities
in the 2009 speech made by Barack
Obama before a Joint Session of
the Congress.2.6 What Are You Talking About?: Topic Modelling

Understanding the different themes or topics that

a piece of text is about constitutes another important and

110 j. rogel-salazar

useful application of natural language processing. The

identification of topics from the word patterns present in a The identification of topics from

word patterns is the main task in

topic modelling.
corpus is known as topic modelling and is an unsupervised

task. In contrast to topic modelling, we have rule-based text

mining approaches based on the use of keyword searching.

But, what is a topic? In this context, we are interested in

looking for repeating patterns of terms that co-occur in a

given corpus. This means that the end result of topic Since topic modelling is an

unsupervised task, no labels are

provided. Our task is to find them!
modelling is a set of words that can be used to describe the

theme or themes in the corpus. Please note that the

algorithm does not provide a closed, definitive topic.

Instead, we require a human to provide the label. Also,

since topic modelling is an unsupervised task, the other

important task in the process requires the identification of

the likely number of topics in the corpus.

2.6.1 Latent Dirichlet Allocation

One of the most popular algorithms employed in

topic modelling is the Latent Dirichlet Allocation algorithm

(LDA). It enables us to explain existing observations based LDA stands for Latent Dirichlet

Allocation.on latent, or unobserved, groups of variables that account

for similarities in the original data.

One of the first descriptions and uses of LDA was in the

area of population genetics by Pritchard, Stephens and

Donnelly14. In their paper, the authors address the problem 14 Pritchard, J. K., Stephens,
M., and Donnelly, P. (2000).
Inference of population structure
using multilocus genotype data.
Genetics 155(2), 945–956

of assigning individuals to K populations (with K

potentially being unknown). In this case, instead of different

pieces of text, we have individual genotypes, and instead of

advanced data science and analytics with python 111

looking at the frequency of words in each text, we are

interested in the allele frequencies in the populations. The

distribution on these frequencies is assumed to have a

Dirichlet distribution which has the property that the

frequencies add up to 1.

In short, the Latent Dirichlet Allocation algorithm takes

information from latent variables taking samples over a

probability simplex representing probabilities over K Think of a simplex as a set of

numbers that add up to 1.distinct categories, and the aim is to allocate each

observation to one of the categories.

A more formal description of the LDA algorithm was done

by Blei, Ng and Jordan15 in 2003. In that paper, LDA is 15 Blei, D. M., Ng, A. Y., and
Jordan, M. I. (2003). Latent
Dirichlet Allocation. Journal
of Machine Learning Research 3,
993–1022

presented in the context of topic modelling where each

piece of text is seen as a mixture over an underlying set of

topics. Here, we will provide an intuitive explanation of the

main concepts behind the algorithm.

Let us start by considering a collection of documents we

are interested in analysing. Each individual document talks

about particular subjects and we can safely assume that

each document contains a mixture of different topics. One Any given document is thought of

containing a mixture of different

topics.
topic may contain the words “quantum”, “atom”, “energy”

and “tunnelling”, whereas another may have words such as

“data”, “statistics”, “python” and “analytics”.

Topics are therefore abstract entities that we cannot directly

see. Nonetheless, the appearance of the words mentioned

in our example lets us infer that documents that contain the
Nonetheless, we can try to

identify a dominant topic in

each document.
first set of words are about “quantum physics”, whereas those

containing the second are about “data science”, for example.

112 j. rogel-salazar

This all sounds very encouraging; however, it is not possible

to infer the topics exactly. There may be some documents

about doing research in quantum physics using Python

to analyse data! In any event, we may be able to work

backwards and still be able to say something about the

latent topics in our corpora.

We can, for instance, assume that we know which topic

created each and every word in the collection, and then

we see a word wn in document w whose topic of origin is A document here is a sequence

of N words denoted by w =

(w1, w2, . . . , wN).
unknown to us. Furthermore, we have a corpus made out of

M documents denoted D = {w1, w2, . . . , wM}. Our task is

to decide if word wn comes from topic zn.

Some avenues we may be able to pursue to answer the

question include the frequency with which word wn appears

in documents about topic zn. Also, we may want to consider The powerful Bayes’ theorem

strikes again!if topic zn is prevalent in the rest of document w. At this

point, it may be convenient to remind ourselves of the

powerful Bayes’ theorem:

P(A|B) =
P(A)P(B|A)

P(B)
, (2.1)

where P(A|B) is the conditional probability of event A

taking place given B. We provided a derivation of this

expression in Chapter 6 of Data Science and Analytics with

Python16. 16 Rogel-Salazar, J. (2017). Data
Science and Analytics with Python.
Chapman & Hall/CRC Data
Mining and Knowledge Discovery
Series. CRC Press

In this case, we know the frequency of the word wn in topic

zn as well as the total number of words in that topic. Also

we have a prior of the number of words in document w

that come from topic zn. We can use Bayes’ theorem to

advanced data science and analytics with python 113

determine the probability of having topic zn given the word

wn in document w.

In LDA for each document w in corpus D we require the

following constructs:

• The sequence of N that makes up a document follows a This requirement on N can be

relaxed.Poisson distribution, and

• θ follows a Dirichlet distribution denoted Dir(α) α will become one of our

parameters.

For each of the N words we choose a topic zn that follows

a multinomial distribution with parameter θ, and then Another parameter in our model is

β.we choose a word wn from the multinomial probability

conditions on the topic zn, i.e., p(wn|zn, β).

What does this all mean? Well, remember that we started

up assuming that the words in a document come from a

specific topic, and vice versa. Let us then get all the words

and allocate them to random topics to test if our initial This is in effect the iterative work

we require in the algorithm to

determine the topic distribution in

our corpus.

assumption holds. Effectively we use the words in the

documents to assess the words in the topics, and then

we use the words in the topics to assess the words in the

documents. If the words fit in the topic distribution, then we

can go home. However, if they do not, then we change the

topic the word is in. This is done iteratively until not many

words need to be changed.

In the expressions above, you may have noticed two

hyperparameters in our model, namely α and β. The first

one is related to the document-topic density, in other words

the number of topics per document; whereas the second one

The higher the value of α, the

higher the number of topics in a

document. The higher the value of

β, the higher the number of words

per topic.
tells us something about the topic-word density. That is the

114 j. rogel-salazar

number of words per topic. The other parameter that needs

to be given as an input is the number of topics!

As stated by Blei et al17, the inferential problem in LDA is 17 Blei, D. M., Ng, A. Y., and
Jordan, M. I. (2003). Latent
Dirichlet Allocation. Journal
of Machine Learning Research 3,
993–1022

computing the posterior distribution of the latent variables

given a document:

p(θ, z|w, α, β) =
p(θ, z, w|α, β)

p(w|α, β)
(2.2)

It is possible to represent the LDA model as a probabilistic

graphical model as shown in Figure 2.6. The parameters α

and β are sampled once and are defined at a corpus level.

The variables θ are sampled once per document, whereas w

and z are sampled once for each word in each document. Figure 2.6: Graphical model
representation of LDA.

From the discussion above, it is clear that we need to break

down our documents into the constituent words and the

information presented earlier on in this chapter is therefore

quite useful. In particular, we will need to create a

vocabulary of all the known words and measure their

presence in our corpus. This is usually referred to as a bag of

words, where information about the word order or even the We need to determine the

vocabulary in our corpus and

we do this with a bag of words

approach.

sentence structure is disregarded, and we are only

concerned with whether individual words are present or not

in a document. If we look at individual words, we have a

unigram analysis; in case we are interested in pairs of words

appearing together we are analysing bigrams and as you can

imagine this can be extended to n-grams.

For probabilistic models, it is common to use the

log-likelihood of a held-out test for evaluation. We should

advanced data science and analytics with python 115

be familiar with the idea of partitioning our dataset into

training and testing sets, and in this case we would have wd

unseen documents and for our purposes of evaluation we

can ignore the topic-distributions as they correspond to the

training set. The perplexity measure is defined in terms of

the log-likelihood as:

The perplexity measure can help

us determine the performance of

our model.Perplexity(wd) = exp
(

−
∑d log p(wd|z, α)

count of tokens

)

. (2.3)

The perplexity is a decreasing function of the log-likelihood

of the unseen documents, and the lower the perplexity, the

better the model.

2.6.2 LDA in Action

It is now time to take a look at LDA in action. There are

several options we have with Python including the excellent

gensim18 package, or spaCy19. In this case we are going to 18 Řehůřek, R. and P. Sojka (2010,
May). Software Framework
for Topic Modelling with Large
Corpora. In Proceedings of the
LREC 2010 Workshop on New
Challenges for NLP Frameworks,
Valletta, Malta, pp. 45–50. ELRA.
http://is.muni.cz/publication/

884893/en
19 spaCy. https://spacy.io

concentrate on our good old friend Scikit-learn.

In Chapter 6 of Data Science and Analytics with Python20, we

20 Rogel-Salazar, J. (2017). Data
Science and Analytics with Python.
Chapman & Hall/CRC Data
Mining and Knowledge Discovery
Series. CRC Press

encountered a dataset containing a number of tweets used

in the context of explaining the naïve Bayes classifier

algorithm. We will be using the same corpus here. The data

contains two sets: A training dataset with labelled tweets,

and a testing dataset without labels. For the purposes of the

discussions in this chapter, we will not be using the given

labels in the training dataset. Remember that topic

modelling is an unsupervised task! The data can be

http://is.muni.cz
https://spacy.io
http://is.muni.cz

116 j. rogel-salazar

obtained at https://doi.org/10.6084/

m9.figshare.2062551.v121. 21 Rogel-Salazar, J. (2016,
Jan). Data Science Tweets.
https://doi.org/10.6084/
m9.figshare.2062551.v1

Let us first read the data into Python:

import pandas as pd

tweets = ’Train_QuantumTunnel_Tweets.csv’

tweets = pd.read_csv(tweets, encoding=’utf-8’)

As we are interested in the words that appear in our tweets,

The location of your file may be

different!

we are bound to lose some information such as URLs and

even @-mentions and hashtags. We will process our data to

capture this information with the following function:

This function lets us capture

@-mentions, hashtags and URLs.

def mentions_hashtags_urls(tw):

mnt = re.compile(‘‘@\w+(?:[-’]\w+)*|’’)

hash = re.compile(‘‘#\w+(?:[-]\w+)*’’)

urls = re.compile(‘‘http\S+’’)

mention = ‘‘ ’’.join(mnt.findall(tw))

hashtag = ‘‘ ’’.join(hash.findall(tw))

link = ‘‘ ’’.join(urls.findall(tw))

return mention, hashtag, link

This compiles a regular expression to capture @-mentions,

hashtags and URLs. and returns a concatenated version of Remember that findall returns a

list.each of these items. We can now map this function from

the “Tweets” column in our dataset to three new columns as

follows:

https://doi.org/10.6084/m9.figshare.2062551.v1
https://doi.org/10.6084/m9.figshare.2062551.v1
https://doi.org/10.6084/m9.figshare.2062551.v1
https://doi.org/10.6084/m9.figshare.2062551.v1

advanced data science and analytics with python 117

tweets[’Mentions’], tweets[’Hashtags’],\

tweets[’URLs’] = zip(*tweets[’Tweet’].\

map(mentions_hashtags_urls))

We are not going to do much else here with this

Here we use the power of zip to

populate three columns in our

dataframe! Cool, right?

information, but you can take a look at the results and

perhaps use them to improve the vocabulary in our bag of

words. Here is some of that information though:

These three columns can help

inform our topics. We will not use

them in the rest of our analysis

though.

tweets[[’Mentions’, ’URLs’, ’Hashtags’]].tail(3)

Mentions URLs Hashtags

@R_Trotta

https://t.co/no4Usx6djV #maths

http://t.co/fW7pSgTWGj

We are ready to start the tokenisation of our corpus and

for that we need to bring up some useful packages and

functions. First we will be using the TweetTokenizer we

encountered in Section 2.4. We can also decide to use a

lemmatiser or a stemmer for the pre-processing part. In this

case, we will use a stemmer which we hope will help with

some differences in spelling for example between American You write tokenize, I write tokenise.

Let’s call the whole thing off.and British English:

import nltk

from nltk.tokenize.casual import TweetTokenizer

porter = nltk.PorterStemmer()

http://t.co/fW7pSgTWGj
https://t.co/no4Usx6djV

118 j. rogel-salazar

We may also want to get rid of the most common words in

our bag, either in the language of the corpus such as “a”, In this case, the language is

English.“the” “this”, “that”, ..., or words that we specifically would

like to remove. For that we will use stopwords from NLTK:

from nltk.corpus import stopwords

import string

stop_words = stopwords.words(’english’)

stop_words.extend([‘‘i’ve’’])

Notice that we can even extend the list of words adding

those which are of no interest to us. NLTK supports other

languages including Spanish, German, Italian, etc. Another
Stop words for other languages

are available. We will also

eliminate punctuation in our

documents.
thing we will need to take care of is punctuation. For that

matter we will use the punctuation method of string when

processing our documents.

In a bag of words analysis we need to consider that for a

computer, capital and lowercase letters are not the same. So

“President” and “president” would count as two different

words in their eyes. We can deal with this issue by I know... anthropomorphising

computers is not very useful but

then again...
transforming all capital letters into lowercase as part of the

pre-processing we need to carry out.

Here are the steps we will be taking:

• Transform the text into lowercase characters

• Remove @-mentions

• Remove character sequences that contain numbers

advanced data science and analytics with python 119

• Remove URLs

• Tokenise each document with TweetTokenizer

• Remove stop words (English)

• Stem the tokens

• Remove punctuation

• Finally we join back the tokens in a processed string

Let us take a look:

We will use this function to

process our corpus. It will later be

employed on unseen tweets too.

def tw_preprocess(tw):

tw = tw.lower()

tw = re.sub(‘‘@\w+(?:[-’]\w+)*’’, ‘‘’’, tw)

tw = re.sub(r‘‘\S*\d\S*’’, ‘‘’’, tw)

tw = re.sub(‘‘http\S+’’, ‘‘’’, tw)

tw = re.sub(‘‘[#|’]’’, ‘‘’’, tw)

tokens = TweetTokenizer().tokenize(tw)

tokens = [t for t in tokens if t not in

stop_words]

tokens = [porter.stem(t) for t in tokens]

tokens = [t for t in tokens if t not in

string.punctuation]

tokens = ’ ’.join(tokens)

return tokens

OK, it is now time to process our corpus:

tweets[‘‘Processed_Tweet’’] = tweets[‘‘Tweet’’].\

apply(tw_preprocess)

Let us preview the result:

120 j. rogel-salazar

> tweets["Processed_Tweet"].tail()

perhap peopl level

yay connect automat eduroam univers michigan great

true mean would cinema arriv late also paid ent...

report card famou mathematician math

princeton guid linear model logist regress r

We are in a position to vectorise our documents; in other

Remember that we have stemmed

our words.

words, we would like to create a (sparse) matrix containing

the words that make up each of the documents in our

corpus. We can do this in Scikit-learn with the help of

CountVectorizer:

CountVectorizer creates a matrix

of token counts from the words

contained in our corpus.

from sklearn.feature_extraction.text import \

CountVectorizer

no_features = 1000

vectoriser = CountVectorizer(

min_df=2,

max_features=no_features)

We are defining a matrix of token counts where we require

at least 2 occurrences of the token (mid_df=2) and consider

a vocabulary of 1000 features ordered by term frequency

across the corpus (max_features). We can define other

parameters such as the use of stop_words to remove stop

words, or define regular expressions to extract tokens with

We have already taken care of stop

words above.

token_pattern.

advanced data science and analytics with python 121

Now that we have instantiated our vectoriser, let us learn

the vocabulary and return the term-document matrix for

our corpus:

We use get_feature_names to

obtain a human readable version

of the tokens used in our model.

tw_vectorised = vectoriser.\

fit_transform(tweets[’Processed_Tweet’])

tw_vectorised_names = vectoriser.\

get_feature_names()

We can get the actual tokens that have been used in the

construction of the matrix with the help of the

get_feature_names method. Let us look at the first few

entries:

See the result of

get_feature_names here.

> print(tw_vectorised_names[:5])

[’actual’, ’ai’, ’algorithm’, ’alien’, ’amaz’]

The term-document matrix we have now obtained can be

used to feed to the Latent Dirichlet Allocation algorithm.

Scikit-learn has an implementation of the LDA algorithm in Scikit-learn provides

LatenDirichletAllocation to

implement LDA.
sklearn.decomposition. We will now instantiate an object

to be used in our modelling:

from sklearn.decomposition import\

LatenDirichletAllocation

Remember that the number of topics is an input parameter.

However, we do not know a priori how many topics there

are. So, we are going to carry out a grid search on the

122 j. rogel-salazar

number of topics. The implementation offers two learning Number of components in the

language of Scikit-learn.methods: A batch variational Bayes method, and an online

one. The latter uses a mini-batch of training data to update

the topics incrementally. The learning rate for the online

method is controlled by the learning decay and learning

offset parameters.

Our grid search will be done over both the number of topics

and the learning decay. We will look at having between 3

and 7 topics in the corpus and learning decay equal to 0.6,

0.8 and 1.0. We will carry out a grid search

over two parameters: The number

of topics and the learning decay.n_components = range(3, 8)

search_params = {‘‘n_components’’: n_components,

‘‘learning_decay’’: [0.6, 0.8, 1.0]}

Let us instantiate our LDA model:

Our model needs to be

instantiated before we are able

to use it. This is true for other

Scikit-learn models too.

lda = LatentDirichletAllocation(

max_iter=10,

learning_method=‘‘online’’,

random_state=0,

evaluate_every=-1,

learning_offset=50.0)

We have a model with 10 as the maximum number of

iterations, using the online Bayesian method with a random

number generator seeded with 0. We can evaluate the

perplexity at a number of iterations. If the evaluate_every

parameter is 0 or negative, we do not evaluate the perplexity

advanced data science and analytics with python 123

in training at all. Finally, a positive learning offset

down-weights early iterations of the online learning

method.

Let us search the parameters; in this case, we are requesting

a 15-fold cross-validation and iid=True means that we

want to get the average score across folds, weighted by the

number of samples in each test set. In this case we are performing a

grid search with a 15-fold cross

validation.from sklearn.model_selection import GridSearchCV

model = GridSearchCV(lda,

param_grid=search_params,

cv=15,

iid=True)

Training the model may take some time, and in the end we

are interested in the best estimator found: The best model out of the grid

search is returned with the

best_estimator_ method.model.fit(tw_vectorised)

best_lda_model = model.best_estimator_

The best model obtained has the following parameters:

The chosen parameters for the best

estimator can easily be obtained.

> print(‘‘Best Model’s Params: ’’,

model.best_params_)

Best Model’s Params: {’learning_decay’: 1.0,

’n_components’: 3}

As you can see, we seem to have 3 topics in the corpus. The

model’s score and perplexity are:

124 j. rogel-salazar

> print(‘‘Best Log Likelihood Score: ’’,

model.best_score_)

Best Log Likelihood Score: -936.9353366306428

> print(‘‘Model Perplexity: ’’,

best_lda_model.perplexity(tw_vectorised))

Model Perplexity: 730.704993701156

With the model trained, we can now create our

Please remember that there is

an element of randomisation in

the process and you may not get

exactly the same scores and results

shown here.

document-topic matrix and extract the dominant topic for

each document: Once we have the model, we can

create our document-topic matrix.

lda_output=best_lda_model.transform(tw_vectorised)

The output of the LDA model can be added to our original

dataframe:

The output of the model can be

added to our original dataframe.

topicnames = [’Topic’ + str(i) for i in

range(best_lda_model.n_components)]

tweets = pd.concat([tweets,

pd.DataFrame(

np.round(lda_output, 2),

columns=topicnames)], axis=1)

Finally, we can obtain the dominant topic for each of the

documents:

advanced data science and analytics with python 125

dominant_topic = np.argmax(

df_document_topic[topicnames].values, axis=1)

tweets[’Dominant_Topic’] = dominant_topic

We can take a look at some of the results obtained:

The dominant topic is the one

with the highest score.

And the results are in!

> tweets[[’Tweet’, ’Dominant_Topic’]].head(4)

Tweet Dominant_Topic

Oh... It is even worse... 0

RStudio OS X Mavericks... 2

A Hubble glitch has pr... 0

@kwbroman Good questio... 1

The first and second tweets correspond to topic 0, the

second one to topic 2 and the fourth one to topic 1. We can

take a look at the distribution of the tweets among the three

topics:

We can take a look at the

distribution of topics.

df_topic_distribution = (

tweets[’Dominant_Topic’].\

value_counts().reset_index(

name="Num Documents"))

df_topic_distribution.columns = [’Topic Num’,

’Num Documents’]

This leaves us with the following distribution:

126 j. rogel-salazar

> print(df_topic_distribution)

Topic Num Num Documents

1 125

2 107

0 92

Topic modelling tells us the most likely dominant topic

Once again, your results may be

different from these ones.

for each of the documents in our corpus. Nonetheless, we

must remember that the method is an unsupervised task

and therefore it cannot provide us with a label for each of

the topics. That falls to the human in the middle. In other

words, we may take a look at the words that are contained We can take a look at the words

that make up each topic to

provide a label.
in each of the topics and we can try to make sense out of

them. With that in mind, let us create a function that is able

to extract the top n_words from each of the topics:

This function extracts the top

n_words in each topic for us to

assess.

def topic_words(model, feature_names, n_words=10):

for idx, topic in enumerate(model.components_):

print(’Topic ’.format(idx))

print(’ ’.join([feature_names[i]

for i in topic.\

argsort()[: -n_words - 1: -1]]))

The function above will provide by default the top 10 words

in each of the topics found in the training of our algorithm.

For our purposes, let us take a look at the top five words in

our topics:

advanced data science and analytics with python 127

> topic_words(best_lda_model, tw_vectorised_names,

n_words=5)

Topic 0

rugbi via xma think use

Topic 1

new physic statist star time

Topic 2

data xkcd great scienc make

From the information above we can see that Topic 0 is a

Et voilà!

general topic including tweets about rugby; Topic 1 can be
I can say it is a general topic given

the familiarity with the documents.

It may not be that obvious in other

corpora!
safely labelled as physics and science; and Topic 2 as data

science and machine learning.

Our last step is to use these new labels on unseen tweets.

Fortunately in this case we do have a testing dataset. Let us

take a look:

testtweets = ’Test_QuantumTunnel_Tweets.csv’

testtweets = pd.read_csv(testtweets,

encoding=’utf-8’)

We need to perform the same processing done to our We need to apply the same

processing to unseen documents

for scoring.
documents, and this can easily be carried out by applying

the tw_preprocess function defined above to our test tweets:

testtweets[’Processed_Tweet’] = \

testtweets[’Tweet’].apply(tw_preprocess)

128 j. rogel-salazar

We will need to apply the vectoriser transformation to our

new documents and then the model itself so that we can get

the dominant topic. All this can be done with the following

function:

This function lets us score unseen

documents with the trained model

obtained.

def determine_topic(x, vec, model):

mytext = [x]

vec_transf = vec.transform(mytext)

topic_prob_scores = model.transform(vec_transf)

topic = np.argmax(topic_prob_scores)

return topic

All is left to do is to apply this function to our dataset:

testtweets[’Topic’]=testtweets[’Processed_Tweet’].\

apply(determine_topic, vec=vectoriser,

model=best_lda_model)

Together with the processed tweets, the results can easily be

saved if we wanted to. For now, we can take a look at some

of the predictions made:

And there we have it, topic

modelling completed!

> testtweets[[’Tweet’, ’Topic’]].tail(3)

Tweet Topic

knitr in a knutshell tutorial htt... 2

Up all night to get data, a music... 0

A survival guide to Data Science ... 2

And there you have it, LDA is served!

advanced data science and analytics with python 129

2.7 Summary

This chapter has a lot of very useful information to

deal with unstructured data such as text. We started our

discussion by defining what natural language is, and how

natural language processing is concerned with

programming computers to process and analyse large

amounts of natural language data. That sounds like

something a good Jackalope data scientist should master,

right?

We saw how to use Python to access data directly from the

web, and in particular we saw the use of Beautiful Soup to

scrape data from webpages. This required an understanding

of HTML and the way information is organised in terms

of tags. Beautiful Soup enabled us to scrape data from a

page containing the Iris Dataset and we got to grips with

using tags, navigable strings, comments and Beautiful Soup

objects in general.

We also covered the use of regular expressions to capture

specific patterns in a piece of text that is of interest to us.

We discussed some regular expression patterns and

familiarised ourselves with the re module in Python. This

led our discussions to the processing of text in Unicode and

we addressed some of the ways in which Python deals with

encoding issues. We even played with writing in Japanese

and processed the characters appropriately.

As part of the process of understanding text, we discussed

tokenisation and used NLTK as a way to extract meaningful

130 j. rogel-salazar

tokens out of our text. We did this with the help of available

methods as well as creating our own, based for example on

regular expressions. NLTK was also used in the context of

stemming and lemmatising our tokens.

We saw how it is possible to use part-of-speech (POS)

tagging on our tokens so as to be able to distinguish

between important elements in a natural language, e.g.,

verbs, adjectives, nouns, clauses, etc. We used POS tagging

in a US presidential speech to extract named entities

mentioned.

Finally, we discussed topic modelling as an unsupervised

learning task to identify the possible themes or topics that

are addressed in a set of documents. The Latent Dirichlet

Allocation algorithm, or LDA, was our main discussion

point and we applied it to a corpus of tweets we had used

before in the context of the naïve Bayes classifier. C-3PO

watch your step, here we come!

3

Getting Social: Graph Theory and Social

Network Analysis

Network analysis encompasses the study of relations

between interconnected entities. It is based on the use of

graphs to represent those entities (called nodes or vertices) Graph in the mathematical sense;

not to be confused with a plot or a

chart.
and their connections (called edges, arcs or lines). These

graphs can be layered with attributes and can also be

rendered as diagrams.

Network analysis has a large number of applications, from

statistical physics to biology and from communications to

finance. In particular, their application to undestanding

social structures has gained prominence in behavioural Applications of network analysis

can be quite wide.organisational settings as well as psychology, political

science and sociology.

As you can imagine networks can be varied, and the field

tends to be rather multidisciplinary. In this chapter we will

introduce network analysis for social relationships.

132 j. rogel-salazar

However, the tools and methods we will cover can readily

be applied to a variety of other areas. Once you start

looking through the lens of a graph analysis, you may start

seeing networks everywhere.

3.1 Socialising Among Friends and Foes

An integral part of being human is our ability to

identify a variety of structures and patterns. That is also

certainly true when it comes down to social relationships

between individuals, organisations, teams, countries, etc.

Think about your own social relationships, there are people

with whom you have a strong social bond such as your

You may want to hug your friends

(please do!), and through the Holy

Hand Grenade of Antioch towards

thy foe! (please don’t!).close family and friends. You may even have met friends of

friends, some of whom have become closer to you over time.

Others may not and in some situations they may even have

become your nemeses.

The purpose of social network analysis (or SNA for short)

is to understand the relationships between actors with a

tie. The actors in the network are referred to as nodes or Here, we will refer to nodes and

edges.vertices and the ties are usually called edges (undirected),

arcs (directed) or lines. In a social network, the nodes are

usually people and the edges represent a social connection

between them. The focus of analysis is not necessarily at the

individual level, instead we are interested in the connections

that are embedded in the network. In other words, we

would like to understand what information passes through

the network.

advanced data science and analytics with python 133

It is easy to see that relationship between actors in the

network carries some meaning. Going back to thinking

about your own social relationships, the meaning may

represent the level of affection, membership, or

communication, etc. These ties can have a direction. Directed graphs have edges with

direction, represented with an

arrow.
Consider for example the relationship “love” where the

feeling may sadly not be reciprocated. In those cases, we

have a directed graph. However, in a situation where the tie

means “shared interests” the relationship is directionless

and we therefore have an undirected graph.

Figure 3.1: An example of a social
network with directed edges.

In the network shown in Figure 3.1, we can see a directed

network where the arrows indicate the direction of the

We know it is directed as the

edges are represented with

arrows.

relationship. We can see that Michael and Terry J have a

mutual relationship, as well as Terry J and Graham. John

has two outgoing relationships (with Terry J and Terry G)

and one incoming relationship with Eric.

134 j. rogel-salazar

Sometimes it is useful to concentrate our exploration of a

network on a specific node. Within a social network context,

we refer to those subsets as ego networks. The ego network Ego networks concentrate on a

specific node in the network.for Terry G in our example can be seen in Figure 3.2. As

you can see, this enables us to focus only on the edges that

connect the node of interest with the rest of the network.

Figure 3.2: The ego network for
Terry G. Only the related nodes
are highlighted and the rest are
dimmed down for clarity.

The ties that connect the nodes in the network can tell

us things regarding how strongly (or weakly) the actors

interact. We can identify clusters in the network exhibiting

characteristics such as homophily, that is the tendency of

individuals to associate and bond with similar actors, or Homophily → “Birds of a feather

flock together”.
transitivity, i.e., when there is a tie from node i to node j,

and also from node j to node k the relationship is transitive Transitivity → “Friends of my

friends are my friends”.if there is also a tie from i to k (see Figure 3.3). We can

advanced data science and analytics with python 135

also distinguish cliques which are densely, fully connected

components in the network.

Figure 3.3: Transitivity in a
network.

All these relationships can be uncovered, studied and

understood using the tools developed by the branch of

mathematics known as graph theory. It has a long and

distinguished history starting in the 18th century with the

Swiss mathematician Leonhard Euler solving a pass time

puzzle that entertained people in the old Prussian city of Graph theory is at the heart of

social network analysis.Königsberg, now Kaliningrad, Russia. The layout of the city

connected four land masses divided by the Pregel river by

seven bridges. The puzzle challenged the walker to find a

way through the city crossing each bridge only once.

Leaving behind the geographical position of the land masses

and the bridges, Euler’s solution consisted instead of

concentrating on the connections1. The result can be 1 Euler, L. (1736). Solutio
problematis ad geometriam
situs pertinentis. Comment. Acad.
Sci. U. Petrop. 8, 128–140

represented with a graph. See our depiction in Figure 3.4.

Euler’s approach laid the foundations of network theory as

we know it today.

The nodes in Figure 3.4 represent the land masses and the

edges are the bridges. When looking at the problem in this

136 j. rogel-salazar

Figure 3.4: A schematic
geographical representation
of the seven bridges of Königsberg
and a network highlighting the
connectivity of the four land
masses in question.

way and according to the puzzle rules, you can see that

when you arrive to any particular node via an edge you

will need to leave it via a different line (unless it is the final

destination!). This means that any node that is neither the You can follow this discussion

with the network shown in Figure

3.4.
starting, nor the ending position requires to have an even

number of lines, in other words, for every bridge used to

enter, there needs to be one bridge to leave.

This means that to be able to have a walking journey that

crosses every edge once, at most two nodes can have odd

number of edges. As we can see from the graph in Figure Either two nodes, or none at all!

3.4, all nodes have an odd number of edges and as such the

puzzle has no solution. Voilà!

Graph theory is therefore the study of relationships: Given a

set of edges and nodes, which can be references to people,

computer networks, companies, atoms, etc., it is possible to

quantify and understand a variety of dynamic systems. If

the nodes were cities and the edges refer to routes The travelling salesman problem

is a classic algorithm problem in

computer science.
connecting those cities, we end up with a classical problem

known as the travelling salesman problem where given a finite

number of cities, along with the cost of travel between each

advanced data science and analytics with python 137

pair of cities, the task is to find the cheapest way of visiting

all of the places and returning home (i.e., the starting point).

The problem can be posed in a variety of ways. A great

example is the puzzle game invented in the late 1850s by

the mathematician William R. Hamilton known as the

Icosian game2 where the aim is to find a Hamiltonian cycle, 2 Ball, W.W.R. and Coxeter, H.S.M.
(1987). Mathematical Recreations and
Essays. Dover Recreational Math
Series. Dover Publications

in other words, a graph that visits each node only once,

along the edges of a dodecahedron. The travelling salesman

problem is a computationally difficult problem, and a large Actually it is an NP-Hard

problem.number of heuristics and exact methods are known to tackle

it; in some instances, a solution can be found for tens of

thousands of cities.

Ever since Euler’s incursion in the field, mathematicians,

physicists, biologists, chemists, engineers and social

scientists have found uses for graphs. Given our interest in

social analysis, perhaps it is illustrative to explore some of

these applications. A great place to start is the game that the

characters in Frigyes Karinthy’s short story Chains3 create: 3 Karinthy, F. (1929). Chains in
Everything is Different. Online
at http://bit.ly/karinthy_chains.
Translated from Hungarian and
annotated by Adam Makkai.
Edited by E Jankó

Find the chain that connects two individuals through at

most five acquaintances. This is the beginning of the

small-world experiments that gave us the notion of the six

degrees of separation.

During the 1960s the experimental psychologist Stanley

Milgram devised a series of experiments to prove the

existence of short paths (the eponymous six degrees) among

social connections4. The main aim was to test the notion 4 Milgram, S. (1967). The small
world problem. Psych. Today 1(1),
60–67that the world has shrunk in an ever interconnected world.

Today the experiment may seem a bit rudimentary given the

http://bit.ly/karinthy_chains

138 j. rogel-salazar

social media tools we have at our disposal, but back in the

1960s the mere idea of interconnectedness was put to the

test. In one of the experiments for example, Milgram

arranged for 96 packages to be sent randomly to chosen

people living in Omaha, Nebraska. Each package contained They were randomly chosen from

a telephone directory!instructions for each recipient telling them to get the

package back to a friend of his who lived in Boston,

Massachusetts. The name of the ultimate recipient was

provided, along with his address and his occupation (a

stockbroker).

The task requested that each recipient of a package send

it to a person they knew on a first-name basis and who

they felt would be socially closer to the ultimate addressee.

These new recipients were in turn asked to do the same

until, of course, the package was hopefully received by 18 of the 96 packages reached their

destination with a mean number

of connections equal to 5.9.
the stockbroker in Boston. The lucky Bostonian received

18 of the 96 original packages, and the mean number of

the connections from start to end turned out to be around

5.9, leading to the famous 6 degrees everyone, including

ourselves, is talking about.

The imagination of a lot of us has been captured by this

“small world” phenomenon, but the real surprise is the

easiness with which, using local information, it is possible

to navigate a large social network. So much so, that similar The Bacon number connects any

given actor to Mr. Kevin Bacon.challenges have kept film trivia boffins entertained with

calculating the so-called Bacon number where the aim is to

find the shortest path that connects any given actor to Mr.

Kevin Bacon in terms of having worked together.

advanced data science and analytics with python 139

The Bacon number is in fact an application of the Erdös

number used and abused by mathematicians to describe The Erdös number connects any

given mathematician to Paul

Erdös.
the distance of academic collaboration with the prolific

Hungarian mathematician Paul Erdös. The measurement

is the authorship of papers that connect mathematicians:

Erdös himself has number 0; those mathematicians who

co-authored a paper with him have an Erdös number of 1,

co-authors who have penned a paper with a scientist whose

Erdös number is n have an Erdös number equal to n + 1. The

calculation is given by the so-called shortest path algorithm

which aims to find a path between two nodes such that the

sum of the weights of the edges is minimal.

There is even a combined Erdös-Bacon number which is the

sum of someone’s Erdös number with their Bacon number.

Some of my favourite nodes in the network that intersects

thespians with scientists include Mayim Bialik of The Big

Bang Theory fame and Natalie Portman (aka Star Wars’s The sitcom by the way, not the

event that created the Universe.Queen Amidala among other characters) both have an Erdös

number of 5 and a Bacon number of 2 (as of 2018), leaving

them with an Erdös-Bacon number of 7. Carl Sagan and

Stephen Hawking both have an Erdös-Bacon number equal

to 6 (Bacon= 4, Erdös= 2).

The work of Duncan Watts and Steve Strogatz on

small-world networks5 has become so influential that these 5 Watts, D. and Strogatz, S. (1998).
Collective dynamics of small-
world networks. Nature 393(1),
440–442

networks are often referred to as Watts-Strogatz networks. It

is important to mention that the wide preference is to use

the term specifically to describe graphs with a small mean

geodesic path length and significant local clustering. We

will come to explain some of these terms in the next section.

140 j. rogel-salazar

These days, the opportunities to analyse social media data

are open to a lot of us, from using Twitter data6 to help 6 Grandjean, M. (2016). A social
network analysis of Twitter:
Mapping the digital humanities
community. Cogent Arts and
Humanities 3, 1–14

better define the term digital humanities, all the way

through to finding what combinations of flavours make

some dishes taste great7. 7 Simas, T. et al. (2017). Food-
Bridging: A new network
construction to unveil the
principles of cooking. Frontiers in
ICT 4, 14

Some applications could be as complex as understanding

the symptoms experienced by cancer patients undergoing

chemotherapy8; or simply visualising the relationships 8 Papachristou, N. et al. (2019).
Network Analysis of the
Multidimensional Symptom
Experience of Oncology. Scientific
Reports 9(1), 2258

between philosophers over centuries9. We need to be

9 Noichl, M. (2017).
Relationships between
Philosophers, 600 b.c - 160 b.c.
https://homepage.univie.ac.at/
noichlm94/full/Greeks/index.html.
Accessed: 2019-02-18

mindful, of course, of the data privacy issues that may arise

when sourcing information from various social media

platforms and other sources of information. This is not just

important in the analysis of social networks, but indeed

more general to any data science work we are involved with.

Be a good Jackalope data scientist!

3.2 Let’s Make a Connection: Graphs and Networks

Now that we have a better idea of the applications and

usefulness of networks, it is time to provide some of the

notions that underpin the framework that enables us to

understand the connections (edges) between the actors

(nodes) in a given network. That framework is largely built Graph theory is a branch of

mathematics interested in the

properties of graphs.
around graph theory, a branch of mathematics interested in

the properties of graphs. As we saw in the previous section,

the basic idea of graphs was introduced by Euler and in this

section we will address some important aspects we need

to understand to work with graphs, but we will not cover

graph theory in its full glorious interconnectedness.

https://homepage.univie.ac.at
https://homepage.univie.ac.at

advanced data science and analytics with python 141

Up until now we have defined a graph in a loose way. Let

us correct that and define a graph G as an object that

consists of a collection of nodes or vertices V, and arcs or G = (V, E) denotes the graph G

with nodes V and edges E.edges E, that connect pairs of vertices and can be expressed

as G = (V, E). We will refer to an arc as a directed

connection between two nodes. If we consider two nodes v1

and v2 in G, an arc will be denoted as the ordered pair

(v1, v2). If the connection is undirected, we will refer to it as

an edge and will be denoted as (v1 : v2). Notice that the

order in this case is irrelevant.

The neighbours of a node vi are denoted as N(vi) and are

all the nodes immediately connected to vi. A walk in graph A walk is a sequence that traverses

a graph from neighbour to

neighbour.
G is a sequence that traverses the graph from neighbour

to neighbour. The length |s| of the walk is the number of

lines it contains. A walk is closed if the starting and ending

points are one and the same node. There are other kinds of

walks:

• A trail is a walk where no lines (i.e., arcs or edges) are

repeated. This was the aim in Euler’s Königsberg puzzle:

We cannot use the same bridge again.

• A path is a walk where no nodes are repeated. Using the There are other kinds of walks,

such as trails, paths, cycles and

chains.
Königsberg arrangement, this would be a case where we

cannot visit the same land mass more than once.

• A cycle is a closed walk where all the nodes are different.

In contrast, an acyclic graph does not contain any cycles.

• A chain or semi-walk is a walk where the direction of

the lines is not considered.

142 j. rogel-salazar

The distance of shortest length between two nodes is

denoted as d(vi, vj). We can take a look at the largest

(maximum) distance between any two vertices in the graph, The diameter of a graph is the

path of maximum length.i.e., maxvi ,vj∈V d(vi, vj). This is the diameter of the graph

and is denoted as diam(G). On the other hand, the shortest

paths are called geodesic paths. Remember: No repeated nodes.

Consider the graph in Figure 3.5, the distance from node

1 to 2 is d(1, 2) = 1 and the distance from node 1 to 4 is

d(1, 4) = 4.

Figure 3.5: An example graph
with seven nodes, and two sub-
graphs.If the nodes are not connected, then d(vi, vj) = ∞. This

means that the graph is disconnected, and thus the vertices

vi and vj live in separate parts of the graph, such as nodes 1

and 7 in Figure 3.5, where we can clearly see the A disconnected graph has paths

with distances equal to infinity

(∞).
disconnection too. If the relationship in the graph was

communication between actors, this situation would mean

that there is no way for any messages to be passed between

nodes 1, 2, 3, 4, 5 and 6, 7 in our example graph.

We say that node vj is reachable from node vi if and only if

(iff) there is a walk starting at vi and ending at vj. We have

advanced data science and analytics with python 143

a weakly connected node iff there is a semi-walk between

nodes vi and vj. Iff both nodes are reachable, then we have As we can see, it is possible to

characterise the connectedness of

our graphs.
a strongly connected pair of nodes. In our example graph,

node 4 is reachable from node 1 (as are nodes 2 and 3);

node 5 is weakly connected to 1. Nodes 3 and 4 are strongly

connected. Notice that nodes 6 and 7 are also strongly

connected, as we are assuming that the lack of arrows in the

line indicates bidirectionality and therefore the relationship

is undirected.

We have seen a typical depiction of a network showing the

connections among neighbours and, if appropriate, the

direction of those connections. It is possible to represent a

graph with the help of an adjacency matrix, i.e., a square

matrix whose elements indicate whether a pair of vertices An adjacency matrix indicates

whether two nodes are connected

or not.
are connected or not. In an undirected graph, the matrix is

symmetric, and typically we will show a 0 if the nodes are

not connected and a 1 if they are. Values different from 1

are possible, and this would indicate the strength or weight

of the connection.. The adjacency matrix for the graph in

Figure 3.5 is given by:

This is the adjacency matrix for

the graph in Figure 3.5.

1 2 3 4 5 6 7




























































1 0 1 1 0 0 0 0

2 0 0 0 0 0 0 0

3 0 1 0 1 0 0 0

4 0 0 1 0 0 0 0

5 0 0 1 0 0 0 0

6 0 0 0 0 0 0 1

7 0 0 0 0 0 1 0

. (3.1)

144 j. rogel-salazar

Notice that only the entries for nodes 3 and 4, and 6 and

7 are symmetric. For the rest, we need to read the matrix

row-by-row to find the connections.

You may have noticed that there is a large number of zero

entries in the adjacency matrix. Computationally speaking,

it may be possible to store this information in a sparse

matrix. An alternative way to store the information

contained in the adjacency matrix is via an edge list where

each entry is given by a pair of vertices that are connected.

If the graph is weighted, the entry

is a triplet: The first two elements

being the nodes and the third one

is the weight.

The edge list for our example graph is given by:

G = [[1, 2], [1, 3], [3, 2], [3, 4], [4, 3], [5, 3], [6, 7], [7, 6]]. (3.2)

Finally, a way that combines the connectivity format of

an adjacency matrix with the briefness of an edge list is

the adjacency list. In this case, for each node in the graph

An adjacency list combines

the connectivity format of

an adjacency matrix, with the

briefness of an edge list.

we store a list that contains the nodes adjacent to it. If the

graph is weighted, we can add the weight to the connected

node too. The adjacency list for our example graph is as

follows:

G = [[1 → [2, 3]], (3.3)

[3 → [2, 4]],

[4 → [3]], [5 → [3]],

[6 → [7]], [7 → [6]]].

It is possible to define a partition of nodes V as the set of

subsets of nodes C = {Ci} such that the union of Ci is equal

to V and for subsets Ci ∩ Cj = ∅ (with i 6= j). In other

advanced data science and analytics with python 145

words, the subsets do not overlap and when looking at

them together as a whole they regenerate the original set V.

We can also define an equivalence relation R on V iff it is

Each equivalence relation

determines a partition into

equivalence classes, and vice

versa.
reflexive (∀v ∈ V : vRv), symmetric (∀u, v ∈ V : uRv → vRu)

and transitive (∀u, v, z ∈ V : uRz ∧ zRu → uRv). Each

equivalence relation determines a partion into equivalence

classes [v] = {u : vRu}; and each partition determines

an equivalence relation. Weak and strong connectivities as

defined above are equivalence relations, defining weak and

strong components.

3.2.1 Taking the Measure: Degree, Centrality and More

We are now well connected with the idea of a graph Pun definitely intended!

and we have defined a number of attributes related to it. In

this section we will define characteristics of the nodes

themselves as well as characterising the relationship

between the nodes in a graph.

Let us start by defining the degree of a node v, deg(v),

as the number of edges that are connected to node v. In

Figure 3.5 the degree of nodes 1 and 3 are deg(1) = 2 and The degree of a node is the

number of edges that are

connected to it. The in- and

outdegrees are only applicable to

directed graphs.

deg(3) = 4, respectively.

The outdegree is only applicable for directed graphs and

outdeg(v) is the number of arcs outgoing from node v.

Similarly, the indegree, indeg(v) is the number of arcs

incoming to node v. In our example graph above, for node

1 we have that outdeg(1) = 2, and indeg(1) = 0; whereas for

node 3, the measures are outdeg(3) = 1, and indeg(3) = 3.

146 j. rogel-salazar

The centrality of the nodes is another important attribute

that gives us information about the most prominent actors

in a network. Centrality in this case refers to how well

connected a node is to the rest of the network. We can think In other words, how central the

node is.of highly connected nodes as power centers, or information

hubs. As such a higher centrality is judged to be an

important asset for a node. We already know how to

calculate the degree centrality of a node: It is simply the

degree measures we defined earlier on.

There are other types of centrality, such as the so-called

betweenness, which is useful in measuring the influence Betweenness tells us about the

influence of nodes over the graph,

thinking of them as bridges over

the network.

that a particular node has over a network. We can think of

this measure as a way to finding bridges between different

components of a graph. Betweenness centrality is calculated

by the shortest (weighted) path between every pair of nodes

and is given by:

g(v) = ∑
a 6=v 6=b

σab(v)

σab
, (3.4)

where σab is the number of geodesic paths from node a to

node b and σab(v) is the number of those paths that pass

through node v.

There are cases where we may be interested in finding out

which nodes are able to spread information more efficiently

through the network. In those cases, the centrality measure

we are interested in is called closeness. The closeness
Closeness centrality tells us about

the nodes that are able to spread

information more efficiently in the

network.
centrality of a node is proportional to the inverse of the

average distance from the node to the rest of the network. In

this way, a node with high closeness centrality has the

advanced data science and analytics with python 147

shortest distances to all the other nodes. This can be

expressed as follows:

C(v) =
N

∑x d(v, x)
, (3.5)

where d(v, x) is the distance between nodes v and x, and N

is the number of nodes in the graph. Closeness centrality is

sensitive to the size of the graph. As you intuitively know, it Closeness centrality is sensitive to

the size of the network.is harder to keep a close relationship with every single one

of the members in a network, and as the network grows in

size this gets harder and harder. Multiplying by the number

of nodes provides a form of correction for this situation.

In some cases, instead of asking how efficient the

communication between nodes may be, we may be

interested in finding out how well-connected the actors in

our network are. This can be seen as an extension to the This is the equivalent of “having

friends in high places”.degree centrality we discussed earlier on. The indegree

centrality scores a point for every link a node receives;

however, in a more general case, not all nodes are equivalent

and there may be some that are more relevant / powerful /

important than others. This is effectively a case of being

endorsed by influential nodes. This can be measured by the Eigenvector centrality tells us

that a node is important if it is

connected to other important

nodes.

eigenvector centrality which tells us that a node is

important if it is linked to other important nodes.

A node receiving many connections does not necessarily

have a high eigenvector centrality score (the actor can have a

lot of friends, but none are in high places); furthermore, a

node with a high eigenvector centrality score is not

necessarily highly linked (the actor has a few but very

148 j. rogel-salazar

important friends). To calculate the eigenvector centrality,

we take advantage of the matrix representation of the graph Hence the name!

and calculate its eigenvectors. First of all, we need to

calculate a measure that is proportional to the sum of the

scores of all nodes connected to a given node, i.e.:

xi =
1
λ ∑

j∈M(i)

xj, (3.6)

where the sum is over all j ∈ M(i) such that the nodes j

are connected to the node in question (i). Another way to

calculate this is using the adjacency matrix A and we let x

be the vector that has the centrality scores enabling us to

write the following eigenvector equation:

Surely you can recognise this as an

eigenvector equation.
Ax = λx, (3.7)

where λ is called the eigenvalue. Our task is to find λ,

and in general there may be multiple non-trivial solutions

to the problem. We need to use an extra tool from our

Jackalope data scientist belt: If we require that all the entries

in the eigenvector are non-negative, thanks to the Perron-

Frobenius theorem10, there is only one eigenvalue that 10 Bapat, R., R. Bapat, T. Raghavan,
C. U. Press, T. S, G. Rota, B. Doran,
P. Flajolet, M. Ismail, T. Lam, et al.
(1997). Nonnegative Matrices and
Applications. Encyclopedia of
Mathematics and its Applications.
Cambridge University Press

satisfies this requirement! This corresponds to the largest

eigenvalue and that is good enough for ranking our nodes

in terms of this centrality measure.

The PageRank algorithm, famously used by Google Search

to rank webpages, is a variant of eigenvector centrality. It is

used to determine the importance of a webpage considering PageRank is a variant of

eigenvector centrality.the number of links it gets, the link propensity of other

pages and the centrality of those pages.

advanced data science and analytics with python 149

We can calculate the PageRank centrality of a node as

follows:

xi = α ∑
k

ak,i

outdeg(k)
xk + β, (3.8)

where α and β are constants, outdeg(k) is the outdegree of

node k, and ak,i is the (k, i) entry in the adjacency matrix for Note that if the outdegree of k is

null, we require that outdeg(k) = 1

in this calculation.
the graph. We can write this equation in matrix form as

x = αxD−1 A + β, with D−1 being a diagonal matrix with

k-th diagonal element equal to 1/outdeg(k). We can solve

for x as x = β(I − αD−1 A)−1. We call α the damping factor,

and its value should be chosen between 0 and 1/ρ(D−1 A),

where ρ(D−1 A) is the largest eigenvalue of D−1 A. It must

be said that for large networks, it is more efficient to

compute the PageRank via power iteration, as it does not See more about power iteration in

Appendix B.have to deal with matrix decomposition and it works very

well with sparse matrices.

3.2.2 Connecting the Dots: Network Properties

We have described a few attributes that characterise

the individual nodes in a graph, and although they are

important, the power comes from the collective properties We are interested in

understanding the aggregate

effects individual nodes have on

the whole network.

that the nodes provide to the whole network, as they show

the structure in the relationships between the actors. The

emerging properties of the network as a whole provide us

with a view of the aggregate effects individual nodes have

on the whole.

For instance, looking at the different centrality measures Centralisation is an important

characteristic of a network as a

whole.
discussed in the previous subsection, we can take a look

a the centralisation of the overall graph. In other words,

150 j. rogel-salazar

we can measure how even the scores of the nodes are. If

they are evenly distributed we can talk about distributed

networks, where every node is as central as any other. If the

scores are not even, we refer to centralised networks, where

one node is maximally central, and the rest are not.

This brings us to the concept of the density of the network. The density measures how nodes

are connected to one another.It is a measure of how the network nodes are connected to

each other. In the case where all the nodes are connected to

one another, we have a complete graph and the density is

equal to one. Formally speaking, the density D(G) of graph

G is defined by the number of existing edges, m, in the

graph, compared to the total number of all possible edges:

The total number of possible edges

is given by n(n − 1)/2.
D(G) =

2m

n(n − 1)
. (3.9)

The value of D(G) ranges between 0 and 1. In many real

situations, the density of a graph is low. Think of a typical

network in social media: A user will be connected to a few

other users, while the actual network contains many, many

more.

Now that we know about network density, it is

straightforward to talk about cliques or clusters in the Cliques are densely, fully

connected components in the

network.
network. We are interested in knowing how much the nodes

tend to form dense subgraphs, i.e., cliques or clusters. In a

way, this is related to figuring out if two people are friends

given that each person is friends with a common third party.

We call this the local clustering coefficient, and it is given

advanced data science and analytics with python 151

by the following expression:

Ci =
2T(i)

deg(i) (deg(i)− 1)
. (3.10)

In other words, this is the ratio of the pairs of friends of vi

The local clustering coefficient.

who are friends among themselves, T(i), and the total

number of pairs of vi’s friends. T(i) is given by the number

of closed triangles with node vi as one of the vertices,

whereas the total number of pairs of vi’s friends is given by:

deg(i)

2
(deg(i)− 1) . (3.11)

In turn, the clustering in the network can be measured by

the average clustering coefficient:

The average clustering coefficient.C =
1
n ∑ Ci, (3.12)

where n is the number of nodes in the graph.

A closely related measure to the clustering coefficient is

the transitivity of the network. The average transitivity of We introduced the concept of

transitivity on page 134.a network is defined over the number of triangles in the

graph:

Transitivity =
3(num. of triangles)

(num. of connected triples)
, (3.13)

where a connected triple is any trio of nodes i, j, k that forms

an open triangle, for example with connections between

i and j, and i and k. Notice that a closed triangle can be

thought of as being composed of three open triangles. Hence the factor of 3 in the

formula.Transitivity measures the fraction of open triangles that are

actually closed.

152 j. rogel-salazar

We are interested in the clustering coefficient and the

transitivity of a graph as they can be used to check for

structural holes in the network. In other words, these

measures show missing links between neighbours of a node.

They give us information about the efficiency of information

diffusion in the network, as well as how robust it may be to

disruptions.

We may also be interested in identifying the giant

component of a network. This is the largest strongly

The giant component is the largest

strongly connected graph in a

network.
connected subgraph in a large network such that its size is a

constant fraction of the entire graph as the latter grows in

size. If N1 is the size of a connected component K in a

network with N nodes, then K is a giant component if:

lim
N→∞

N1

N
= c > 0, (3.14)

with c being a constant.

Once we are able to detect cliques and giant components, it

is natural to ask if the network exhibits clusters that are not

densely connected to others, but which are densely

connected within themselves. We can think of these

situations as having different “communities” within the

network. Community detection is a hot research topic as it

is an NP-complete problem and in many cases the full NP-complete means that we can

verify the answer quickly, but sadly

there is no known way to find a

solution quickly.

exploration of the entire network is required. The task in

community detection is to find a subgraph S of G(V, E)

where the nodes VS ∈ V share some similarity.

One way we can start detecting groupings in a network is by

finding sub-graphs which keep nodes connected as we

advanced data science and analytics with python 153

traverse the graph. In other words, we need to find a

k-component of the graph. We define a k-component as a

maximal subgraph with, at least, connectivity k. Put in a

different way, if we wanted to break that subgraph into

more components, we would need to remove at least k

nodes from it. The algorithm from Moody and White11 can 11 Moody, J. and White, D.
(2003). Social cohesion and
embeddedness: A hierarchical
conception of social groups. Am.
Soc. Rev. 68(1), 103–128

help us with this task. Note that there is a hierarchical

nature to the structure of k-components in that the

subgraphs are nested from a connectivity point of view: A

given network can have a number of 2-components, which

in turn can have one or more 3-components, and so on.

In terms of community detection, an algorithm usually

employed for this purpose is the Girvan-Newman

algorithm.12 It aims to find the communities in a network 12 Girvan, M. and Newman, M.E.J
(2002). Community structure in
social and biological networks.
Proc. Natl. Acad. Sci. USA 99,
7821–7826

by iteratively removing edges from the initial graph; as such,

the remaining connected components are deemed to be the

communities. The algorithm extends the definition of

betweenness to the edges of the network, with edge

betweenness being the number of geodesic paths between

pairs of nodes that pass through a given edge. The idea is

that separate communities are connected via edges with

high edge betweenness. If we remove these edges, the

community structure is unraveled.

There are a number of algorithms attempting to find

community structures in networks13 from graph 13 Fortunato, S. (2010). Community
detection in graphs. Phys.
Rep. 486(3-5), 75–174partitioning and hierarchical clustering through to

optimisation and generative model techniques.

Unfortunately, we do not have the remit to cover these

methods at length, but we can highlight the Louvain

154 j. rogel-salazar

method14 used to detect communities in large network 14 Vincent D Blondel, Guillaume,
J.-L., Lambiotte, R., and Lefebvre,
E. (2008, Oct.). Fast unfolding of
communities in large networks.
J. Stat. Mech-Theory E 2008(10),
P10008

settings based on a greedy optimisation approach. At the

heart of both the Girvan-Newman and Louvain methods lies

the concept of modularity as a way to quantify how

cohesive the communities in a network are.

We can define modularity in terms of the adjacency matrix

of the graph, A and the sum of the edge weights attached to

a node i given by ki = ∑j Aij:

Q =
1

2m ∑
i,j

[

Aij −
kik j

2m

]

δ(ci, cj). (3.15)

Each term in the sum contributes to the overall modularity

measure by comparing nodes being in the same community

ci. The Kronecker delta function δ(ci, cj) is equal to 1 if

i = j; if not, the nodes are not in the same community and

In other words, if both nodes

are in the same community we

multiply the contribution by 1,

otherwise by 0.δ(ci, cj) = 0. The total edge weight in the entire network is

given by m = 1
2 ∑i,j Aij.

Let us try to get a better understanding of each contribution

to the expression above: We know that ki is the total of the

edge weight attached to i. We can consider a situation

where node i assigns this edge weight randomly to other A dissection of the modularity

terms in Equation (3.15).nodes in a way that is proportional to their own edge

weight values. In that case,
kj

2m is the average fraction of

node i’s edge weight that would be assigned to node j. Put

in a different way, each contribution tells us how strongly

nodes i and j are connected in the actual graph, in contrast

to the case where the nodes are connected in a random

network.

advanced data science and analytics with python 155

The Louvain method proceeds in two steps. In the first step,

we start up by assigning each node to its own community. In a network with N nodes, we

start with N communities.We calculate the change in the modularity score defined

above caused by removing each and every node from its

current community, and placing them in the community

of one of their neighbours. If the changes are negative, we

keep the node in the current community, but if the changes

are positive we assign the node to the community that

generated the highest change.

The second step makes use of the newly created

communities from the first step. These communities are

effectively the nodes of a new network. In this new network,

the edge weight is given by the total of all the edge weights

between the new nodes. There are also self-loops whose Iterations over the two steps in

the Louvain algorithm return the

communities in the network.
weights are given by the edge weights within each

community. We then simply do repeated iterations of these

two steps until there is no improvement in the modularity

measure and the communities are therefore said to be

stable.

The Louvain algorithm is fast compared to other methods

and provides a hierarchical community structure that can

shed light to the networks under scrutiny. However, due

to the merging of communities that happens during the

second step detailed above, detecting small groupings in

a large network results in poor resolution. It is important

Be aware that the Louvain

algorithm may result in poor

resolution of the communities in

the network.therefore to be aware that for sufficiently large networks,

the algorithm may not return the expected communities.

The other issue that we need to take into account is the fact

that determining a global maximum may not be possible,

156 j. rogel-salazar

resulting in a degeneracy where several solutions with

maximum modularity scores are possible.

3.3 Social Networks with Python: NetworkX

We are going to use NetworkX to analyse networks, but

before we do that let us get acquainted with the module.

NetworkX is a Python module that enables us to carry out NetworkX is a Python module for

analysing network/graph data.computational network modelling tasks. It is effectively a

memory graph database with some good rendering

capabilities that let us draw the graphs we analyse.

Although it is not ideal for truly large-scale applications, it

is a good package that a Jackalope data scientist can use for

analysing networks (social or otherwise).

It is possible to represent various network types with

NetworkX including directed and undirected graphs, as

well as multigraphs. Furthermore, the nodes in our graphs

can be any hashable object, and the edges can contain

arbitrary data. The package comes with a variety of useful Think metadata!

algorithms, and it is easy to use.

3.3.1 NetworkX: A Quick Intro

Let us start by importing the NetworkX module,

alongside some other useful ones:

A canonical abbreviation for

NetworkX is nx.

import networkx as nx

import numpy as np

import matplotlib.pyplot as plt

advanced data science and analytics with python 157

We need to instantiate a graph object to which we can add

nodes:

We need to instantiate a graph

object with Graph().

g = nx.Graph()

g.add_node(’A’)

The nodes can also be added from a given list. In this case

we will need to use the add_nodes_from method:

g.add_nodes_from([’B’, ’C’])

From our discussion in Section 3.2 we know that apart from

Adding nodes and edges to the

object is straightforward.

nodes, we also need edges. These can be added as follows:

g.add_edge(’A’, ’B’)

In this case we are adding an edge between nodes A and B.

We can also add edges from a list of tuples:

Edges can be added by specifying

the two nodes connected.

g.add_edges_from([(’C’, ’D’),

(’E’, ’F’)])

Note that in this case we are adding edges between nodes

C and D on the one hand, and E and F on the other one.

NetworkX is smart enough to figure out that although the

nodes have not been defined, they get created as required.

Finally, we can also add weighted edges. In this case we

require a tuple with three entries, the first two entries

correspond to the nodes to be connected, and the third entry

is the weight:

158 j. rogel-salazar

g.add_weighted_edges_from([(1, ’E’, 2),

(’C’, 2, 3.5)])

Notice that the nodes can also be numbers, not just strings.

Weighted edges are defined with a

third value in the tuple.

In the example above, we are creating an edge between

nodes 1 and E with a weight of 2, and an edge between

nodes C and 2 with a weight of 3.5.

We can take a look at the nodes:

We can look at the nodes in a

network with the nodes()method.

> g.nodes()

NodeView((’A’, ’B’, ’C’, ’D’, ’E’, ’F’, 1, 2))

and edges:

> g.edges(data=True)

EdgeDataView([(’A’, ’B’, {}),

(’C’, ’D’, {}),

(’C’, 2, {’weight’: 3.5}),

(’E’, ’F’, {}),

(’E’, 1, {’weight’: 2})])

of our graph g. We are requesting information about the

To see the metadata we can add

data=True to both the nodes or

edges methods.

edges by passing the parameter data=True, otherwise (the

default) we will simply get a list of existing edges.

We can render the network with the draw_network method

as follows:

advanced data science and analytics with python 159

nx.draw_networkx(g,

node_color=’black’,

font_color=’white’,

node_size=800)

Here we are requesting that the nodes are coloured in black

We can plot the network with

draw_network.

and that the font is white with a size of 800 pt. The result The position of the nodes is not

important (until it is! ... for ease of

visualisation!)
can be seen in Figure 3.6. Remember that the position of the

nodes is not important, and indeed the rendering may look

different in your screen.

A

B

C

D

E

F

1

2

Figure 3.6: A simple graph
depicting eight nodes and five
edges.We know that it is possible to represent a graph with the

help of an adjacency matrix. For the undirected graph

shown in Figure 3.6 the adjacency matrix is symmetric and

160 j. rogel-salazar

it can be expressed as:

A B C D E F 1 2








































































A 0 1 0 0 0 0 0 0

B 1 0 0 0 0 0 0 0

C 0 0 0 1 0 0 0 3.5

D 0 0 1 0 0 0 0 0

E 0 0 0 0 0 1 2 0

F 0 0 0 0 1 0 0 0

1 0 0 0 0 2 0 0 0

2 0 0 3.5 0 0 0 0 0

. (3.16)

Notice that the weighted edges we created above are shown

in the corresponding elements of the matrix. We can see the

adjacency matrix for our graph in NetworkX as follows:

adj_matrix = nx.adj_matrix(g)

> print(adj_matrix.todense())

[[0. 1. 0. 0. 0. 0. 0. 0.]

[1. 0. 0. 0. 0. 0. 0. 0.]

[0. 0. 0. 1. 0. 0. 0. 3.5]

[0. 0. 1. 0. 0. 0. 0. 0.]

[0. 0. 0. 0. 0. 1. 2. 0.]

[0. 0. 0. 0. 1. 0. 0. 0.]

[0. 0. 0. 0. 2. 0. 0. 0.]

[0. 0. 3.5 0. 0. 0. 0. 0.]]

We need to use the todense() method as the matrix is

We can see the adjacency matrix

with the adj_matrix method.

stored as a sparse matrix. It is easy to see why this is the

advanced data science and analytics with python 161

case, particularly when we consider the number of zero

entries in matrix (3.16). An alternative representation for the

matrix is as an edge list:

> edge_list = nx.to_edgelist(g)

> print(edge_list)

[(’A’, ’B’,), (’C’, ’D’,),

(’C’, 2, ’weight’: 3.5), (’E’, ’F’,),

(’E’, 1, ’weight’: 2)]

Finally, it is possible to define the graph as an adjacency list.

The edgelist methods shows us

the edge list of our network.

This is actually a dictionary object where the keys are nodes

in the graph and the values are themselves dictionaries. The

latter contain the nodes to which the key node is connected,

and the values can store the weight of the edge (if required).

The adjacency list for our graph is:

The adjacency list can be obtained

with the adjacency method.

> for n in g.adjacency():

print(n)

(’A’, {’B’: {}})

(’B’, {’A’: {}})

(’C’, {’D’: {}, 2: {’weight’: 3.5}})

(’D’, {’C’: {}})

(’E’, {’F’: {}, 1: {’weight’: 2}})

(’F’, {’E’: {}})

(1, {’E’: {’weight’: 2}})

(2, {’C’: {’weight’: 3.5}})

162 j. rogel-salazar

As it is the case in many applications, we usually require

to read and write our data in a more expedient manner. NetworkX supports formats such

as GML, GraphML, pickle, LEDA,

JSON, etc.
NetworkX is no exception, and it is possible to read and

write graph data in a variety of commonly used formats

such as the ones described above, i.e., edge lists or adjacency

lists, as well as others such as GML, GraphML, pickle,

LEDA, JSON, etc.

3.4 Social Network Analysis in Action

In this section, we will take a look at using the concepts

and techniques described earlier in the chapter and start us We will analyse data for Zachary’s

karate club, and Star Wars!to answer questions we may have about specific networks

at hand. First, we will take a look at a classic example of

social network analysis given by the Zachary karate club

network. We will look at some social dynamics shaping

the network. Second, we will analyse the interactions of

Jedis, Siths, Droids and Princesses with a Star Wars network.

Punch it!

3.4.1 Karate Kids: Conflict and Fission in a Network

The art of empty-hand fighting, karate, is a relatively 空手 is read as karate. 空 (kara)

means “empty” and 手 (te) means

“hand”. Karaoke, meaning “empty

orchestra” shares the same first

word with karate!

recent martial art originated on the island of Okinawa, but

influenced by ancient Chinese martial arts known as kung-

fu. Today, karate is a wide-spread sport, with karatekas all

over the world and plenty of dōjōs from which to choose.

Konishi Yasuhiro, an early karate sensei, is quoted to say

that “Karate aims to build character, improve human

advanced data science and analytics with python 163

behaviour, and cultivate modesty; it does not, however,

guarantee it.” And indeed this is something that can be

corroborated with some karate clubs out there. A case in

point is a now famous karate club studied over three years

by Wayne W. Zachary15 in the 1970s to analyse conflict and 15 Zachary, W. W. (1977). An
information flow model for
conflict and fission in small
groups. J. Anthropol. Res. 33(4),
452–473

fission in small groups.

The club was based at a university, and tensions between

the club president, John A., and a part-time instructor, Mr.

Hi, had been brewing for some time due to the setting of

fees. Over time, the club became divided over these issues

with the eventual separation of the club into two: One that The club was eventually split into

two factions.supported Mr. Hi’s teachings, and another one that followed

John A. and the club officers.

Zachary collected information about the original club and

the dataset obtained is now known as “Zachary’s karate

club” network. The groups that emerged from the fission of

the karate club were factions not necessarily recognised by

the club members. Instead, the friendship network among

members gave rise to them during a moment of conflict.

The dataset called karate.gml can be obtained at

https://doi.org/10.6084/m9.figshare.7985174.v116 and 16 Rogel-Salazar, J. (2019c,
Apr). Zachary’s karate club.
https://doi.org/10.6084/
m9.figshare.7985174.v1

we will use it in the rest of this section. It contains 34 nodes

representing individuals within the karate club. The edges

in the network are given by interactions between two

individuals outside the activities of the club such as actual

lessons or meetings.

Let us take a look at the data in the network. We can read

the GML directly with NetworkX as follows:
GML - Graph Modelling

Language.

https://doi.org/10.6084/m9.figshare.7985174.v1
https://doi.org/10.6084/m9.figshare.7985174.v1
https://doi.org/10.6084/m9.figshare.7985174.v1

164 j. rogel-salazar

import networkx as nx

fname = ’karate.gml’

K = nx.read_gml(fname)

We can plot the network with the draw_networkx method.

Remember to refer to the correct

path for the file!

In this case, we will colour the nodes black, with white

labels and a size of 800. By default, the method uses a force-

directed layout to position the nodes and in this case we

make this explicit:
In a force-directed layout the

edges are roughly of equal length,

and crossings are reduced by

assigning forces to the edges

similar to spring-like forces based

on Hooke’s law.

nx.draw_networkx(K, node_color=’black’,

font_color=’white’,

node_size=800,

pos=nx.spring_layout(K))

limits = plt.axis(’off’)

plt.show()

We can see the connections among members in the network

depicted in Figure 3.7. Node number 1 is Mr. Hi (the

instructor) and node 34 is John A. (the administrator). Let

us see some basic statistics of the network:

General information about the

network is obtained with info.

> print(nx.info(K))

Name:

Type: Graph

Number of nodes: 34

Number of edges: 78

Average degree: 4.5882

advanced data science and analytics with python 165

1

2

3

45

6

7 8

9

10

11

12 13

14

15 16

17

18
1920

21

22
23

24

25
26

27

28

29 30

31

32

33
34

Figure 3.7: Zachary’s karate club:
34 individuals at the verge of a
club split. Edges correspond to
friendship relationships among
club members.

166 j. rogel-salazar

We can see that the average degree of the network (4.5882)

falls within the small world networks discussed earlier on

in the chapter. We can request the degree of Mr. Hi and

John A. with the help of the degree method for the network

object:

Degree information for individual

nodes from a list.

> K.degree([’1’, ’34’])

DegreeView(’1’: 16, ’34’: 17)

More information can be obtained with the info method:

The info method can provide

further information about specify

nodes.

> print(nx.info(K, ’1’))

Node 1 has the following properties:

Degree: 16

Neighbors: 2 3 4 5 6 7 8 9 11 12 13 14 18 20 22 32

> print(nx.info(K, ’34’))

Node 34 has the following properties:

Degree: 17

Neighbors: 9 10 14 15 16 19 20 21 23 24 27 28 29

30 31 32 33

Decisions in the club structure were made by consensus

during club meetings. This meant that having a majority in

a meeting would result in decisions being swayed in favour

of one faction over the other. If Mr. Hi called for a meeting,

Information transmission in

Zachary’s karate club network was

important in the decision-making

process, and eventual split.it would be advantageous for him if his supporters received

the information, but not the opposers. This effectively

advanced data science and analytics with python 167

means that the connections between individuals enable the

flow of communication among parties. Those individuals

that were undecided about giving support to one group

over the other one become key players. They are able to

pass on the information more readily than others.

According to the information provided by Zachary, once

the unity of the club was unsustainable, two groups formed

and the membership for each of them is listed in the paper.

Nodes 1 − 9, 11 − 14, 17, 18, 20 and 22 became Mr. Hi’s We know what actors in the

network moved to each of the two

groups after the split.
club and the rest remained with John A. Let us add this

information as metadata to our network. First we create

a dictionary called club holding the membership for each

node:

We can encode this metadata in

our network with the help of a

dictionary.

mr_hi = [*range(1, 10), *range(11, 15),

17, 18, 20, 22]

club = {}

for m in range(1, 35):

if m in mr_hi:

club[str(m)] = ‘‘Mr. Hi’’

else:

club[str(m)] = ‘‘John A.’’

We can now add this dictionary as an attribute to the nodes

in the network:

And add the dictionary as an

attribute to our network.
nx.set_node_attributes(K, club, ’club’)

Let us check the information we just added:

168 j. rogel-salazar

> nodes = K.nodes(data=True)

> print(list(nodes)[:3])

[(’1’, ’club’: ’Mr. Hi’), (’2’, ’club’: ’Mr. Hi’),

(’3’, ’club’: ’Mr. Hi’)]

We know that the degree centrality of a node tells us the

Remember that data=True

provides us with metadata of

both nodes and edges.

number of connections to that node. We saw above that Mr.

Hi and John A. have the largest degrees, but what about the

rest of the nodes? We can answer this question very easily:

The degree of the nodes is

obtained with the degree method.

kdeg = K.degree()

The result is a dictionary that we can query at will. For

instance, we can check the degree of node 9:

We can query the dictionary as

usual.

> kdeg[’9’]

5

Node 9 is an interesting one as mentioned by Zachary.

Individual 9 backed (weakly) John A. but ended up joining Node 9 in the karate network is an

interesting one. Read on!Mr. Hi’s club after the split. The explanation provided was

that the person was only three weeks away from a black belt

test and staying with Mr. Hi ensured that the test could be

taken.

We can plot a network encoding the degree of nodes, their

size, and colouring them according to the final affiliation

of the new clubs. Let us start by defining the color map we

will use:

advanced data science and analytics with python 169

import itertools

nodes = K.nodes(data=True)

clubs = set(nx.get_node_attributes(K,\

’club’).values())

mapping = dict(zip(sorted(clubs),\

itertools.count()))

colors = list(mapping[n[1][’club’]] for n\

in nodes)

The third line in the code above creates a set (unique values)

In order to add colour or size

attributes to the nodes, we need to

create appropriate mappings.

of the clubs in the node attributes. We use this to create a

mapping between the unique clubs and a count to serve as

an index. Finally, we use the mapping to create a list that

will be used to assign the colour index to each of the nodes.

Let us now create the plot:

Notice that we need to pass a

value for each of the node sizes. In

this case, the values are given by

the degree centrality of the node

in question.

nx.draw_networkx(K, node_color=colors,

node_size=[200*val for (node, val) in kdeg])

limits = plt.axis(’off’)

plt.show()

It is possible to customise the plot defining the colour map,

font colour, position, etc. The result can be seen in Figure

3.8. The size of the nodes corresponds to their degree, and

the colour indicates the affiliation to the groups formed after

the split, with the darker grey nodes being Mr. Hi’s group

and the light grey ones are John A.’s supporters.

The largest nodes seem to be nodes 1, 34 and 33. We can

corroborate this with the information that we calculated

170 j. rogel-salazar

1

2

3

45

6

7 8

9

10

11

12 13

14

15 16

17

18
1920

21

22
23

24

25
26

27

28

29 30

31

32

33
34

Figure 3.8: Degree measure of
the Zachary karate club network.
The size of the nodes denotes the
degree and the color corresponds
to the groups formed after the
split of the club. The darker grey
nodes are Mr. Hi’s group and
the light grey ones are John A’s
supporters.

before. In order to make it easier to grab this information,

let us create a function that lists the top n nodes given a

centrality measure (as a dictionary):

We will use this function in the

rest of this chapter. Remember it

well!

def get_top_nodes(cdict, num=5):

top_nodes = {}

for i in range(num):

top_nodes = dict(

sorted(cdict.items(), key=lambda x: x[1],

reverse=True)[:num]

)

return top_nodes

As we can see from the result below, the nodes with the

largest degree in descending order are 34 with degree 17, 1

advanced data science and analytics with python 171

with degree 16, node 33 with 12, followed by nodes 3 with

10, and 2 with 9:

Not surprising to see 34 and 1 in

the top nodes... right?

> get_top_nodes(dict(kdeg))

{’34’: 17, ’1’: 16, ’33’: 12, ’3’: 10, ’2’: 9}

The total number of connections is a good start, but what

about if we weight this measure by the maximum possible

degree in a simple graph n − 1, where n is the number of

nodes in the network. We can calculate this in NetworkX

with the degree_centrality function:

Calculate the degree centrality

with degree_centrality. Simple,

right?

degree_centrality = nx.degree_centrality(K)

nx.set_node_attributes(K,\

degree_centrality, ’dc’)

We can use this normalised measure to look at a histogram

of the degree centrality for the karate club. We can obtain

the frequencies by sorting the values of the measure and use

the Counter from the collections module:

Counting the number of nodes

with a particular degree centrality

is straightforward.

deg_values = sorted(set(degree_centrality.\

values()))

from collections import Counter

value_counts = Counter(degree_centrality.values())

deg_hist = [value_counts[x] for x in deg_values]

172 j. rogel-salazar

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
Degree centrality

2

4

6

8

10

Nu
m

be
r o

f n
od

es

Figure 3.9: Frequencies of the
degree centrality measure for the
karate club network.In Figure 3.9 we can see the result of the calculations above.

There are only a few nodes with degree centralities higher

than 0.4. The bulk of the nodes in our network has lower

scores for this measure. Let us create a plot of the network

using the size as the degree centrality:

We have left out the commands

to avoid showing the axis and the

plot itself.

nx.draw_networkx(K, node_color=colors,

node_size=[3000 * v for v in

nx.get_node_attributes(K, ’dc’).values()])

We can see in Figure 3.10 how the degree centrality keeps

the information about the network. We perhaps have learnt

nothing new. However, the normalised version provides us

with an easier way to make comparisons between the nodes

than the degree directly.

advanced data science and analytics with python 173

1

2

3

45

6

7 8

9

10

11

12 13

14

15 16

17

18
1920

21

22
23

24

25
26

27

28

29 30

31

32

33
34

Figure 3.10: Degree centrality
measure of Zachary’s karate club.
The size of the nodes denotes the
degree centrality. We can see the
importance of not only nodes 1, 34,
33, but also 2 and 3.

We know that the betweenness, tells us about the influence

of particular nodes over the network. Let us calculate the

betweenness for our karate club. This can be done with the

betweenness_centrality function as follows:

Calculate the betweenness with

betweenness_centrality.

betweenness_centrality = \

nx.betweenness_centrality(K)

nx.set_node_attributes(K,

betweenness_centrality, ’bc’)

We mentioned before that betweenness can be seen as a

measure of nodes serving as a bridge between different

components of a graph. Let us have a look at these

“bridges” by getting the top 5 nodes by betweenness.

174 j. rogel-salazar

1

2

3

45

6

7 8

9

10

11

12 13

14

15 16

17

18
1920

21

22
23

24

25
26

27

28

29 30

31

32

33
34

Figure 3.11: Betweenness of
Zachary’s karate club network.
The size of the nodes denotes
the betweenness. We can see the
importance of nodes 1, 34, as well
as 33 and 3. Node 32 is a bridge in
the network.

> get_top_nodes(betweenness_centrality)

{’1’: 0.43763528138528146,

’34’: 0.30407497594997596,

’33’: 0.145247113997114,

’3’: 0.14365680615680618,

’32’: 0.13827561327561325}

Mr. Hi (1) and John A. (34) are indeed prominent in the

Remember the function

get_top_nodes we defined above?

network. We can see the presence of nodes 33 and 3 as

before, but a new comer has appeared in the top 5: Node

32. We can see the relative importance of the betweenness

measure in Figure 3.11. The code for this plot is as follows:

advanced data science and analytics with python 175

nx.draw_networkx(K, node_color=colors,

node_size=[4000 * v for v in

nx.get_node_attributes(K, ’bc’).values()])

We know that the flow of information in the network was

an important way to ensure that the decision taken during

meetings favoured the faction with a majority. A way to

assess which nodes are able to spread information more

efficiently is given by the closeness. We can calculate the

closeness as follows:

The closeness_centrality lets

us calculate the closeness of the

nodes in the network.

closeness_centrality = nx.closeness_centrality(K)

nx.set_node_attributes(K,

closeness_centrality, ’cc’)

The “closest” nodes in the karate club network are as

follows:

We finally see node 9 appear as

an important, close, node in the

network!

> get_top_nodes(closeness_centrality)

{’1’: 0.5689655172413793,

’3’: 0.559322033898305,

’34’: 0.55,

’32’: 0.5409836065573771,

’9’: 0.515625}

Things are getting interesting. We can still see Mr. Hi (1)

and John A. (34) as important nodes. Nothing surprising

there, or indeed by having node 3 in the top “closest” nodes.

We again have node 32 appearing, and now we finally see

176 j. rogel-salazar

node 9 in there. It is through these nodes that information

about meetings would have flowed.

The closeness measure of the nodes is very similar and

showing this measure as the size of the nodes results in

a plot that does not showcase the importance of certain

nodes. Instead, we will show this measure as the colour

of the nodes. This requires us to draw the network’s parts

separately as follows:

We can use separate methods

to render the network in

the way we want. Using

draw_networkx_edges for the

edges, draw_networkx_nodes

for the nodes and

draw_networkx_labels for the

labels. Notice that all have the

same position attribute.

pos = nx.spring_layout(K)

ec = nx.draw_networkx_edges(K, pos=pos)

nc = nx.draw_networkx_nodes(K, pos=pos,

node_color=[v for v in

nx.get_node_attributes(K, ’cc’).values()],

node_size=[1200 * v for v in

nx.get_node_attributes(K, ’cc’).values()])

lb = nx.draw_networkx_labels(K,pos =pos)

We are drawing separately the edges, nodes and labels all

with the same position layout. Note that we are encoding

the closeness measure both in the size of the node and in

its colour. Figure 3.12 shows the result of the commands

above. You can see that the size alone would not tell us

much about the closeness; however, the colour lets us obtain

the information desired.

We can now turn our attention to what nodes are best

connected within the network. We have seen that the

eigenvector centrality provides a view of the nodes that are

endorsed by influential actors. We can calculate the

eigenvector centrality as follows:

advanced data science and analytics with python 177

Figure 3.12: Closeness of
Zachary’s karate club network.
The size of the nodes denotes
the closeness. We can see the
importance of the nodes we
already know about: 1, 34, 33 and
3. Node 9 is a close node in the
network too.

eigenvector_centrality = \

nx.eigenvector_centrality(K)

nx.set_node_attributes(K, eigenvector_centrality,

’ec’)

The best connected nodes in our network are:

Get the eigenvector centrality with

eigenvector_centrality. Getting

the gist of it, right?

get_top_nodes(eigenvector_centrality)

{’34’: 0.373371213013235,

’1’: 0.3554834941851943,

’3’: 0.31718938996844476,

’33’: 0.3086510477336959,

’2’: 0.2659538704545025}

178 j. rogel-salazar

We see John A. be an influencer, with a higher eigenvector

centrality than Mr. Hi. Once again, node 2 makes an

appearance, together with nodes 3 and 33. The eigenvector

centrality network can be seen in Figure 3.13.

nx.draw_networkx(K, node_color=colors,

node_size=[2400 * v for v in

nx.get_node_attributes(K, ’ec’).values()])

1

2

3

45

6

7 8

9

10

11

12 13

14

15 16

17

18
1920

21

22
23

24

25
26

27

28

29 30

31

32

33
34

Figure 3.13: Eigenvector centrality
of Zachary’s karate club network.
The size of the nodes denotes
the eigenvector centrality of the
network.Once we have taken a look at the eigenvector centrality, the

next logical step is to calculate the PageRank. As you can

imagine, there is a handy function in NetworkX to let us do

this: pagerank.

advanced data science and analytics with python 179

pagerank_centrality = nx.pagerank(K,\

nx.set_node_attributes(K,\

pagerank_centrality, ’pr’)

The top five nodes per PageRank are as follows:

The PageRank can be calculated

with pagerank.

The ranking of the nodes with

PageRank returns the usual karate

kids.

> get_top_nodes(pagerank_centrality)

{’34’: 0.10345460652842152,

’1’: 0.09923208031303203,

’33’: 0.07330616298815512,

’3’: 0.05919704684187155,

’2’: 0.0543403155825792}

We can see the usual karate kids: In this case though, nodes

33 and 3 have swapped places in the ranking. We can get a

plot of the network as we have done in the previous cases:

nx.draw_networkx(K, node_color=colors,

node_size=[5000 * v for v in

nx.get_node_attributes(K, ’pr’).values()],

pos=pos)

We can see the result in Figure 3.14, where, as usual, we

have encoded the PageRank centrality score in the size of

the node. We can see the prestige of nodes 34, 1, 33, 3 and 2.

We can start thinking of the factions that were created We can consider what happens to

the graph when we remove certain

nodes.
during the conflict and look at those nodes that are central

to the network. We will keep Mr. Hi and John A. in the

network for obvious reasons. However, we can consider

what happens when we remove some of the nodes whose

180 j. rogel-salazar

1

2

3

45

6

7 8

9

10

11

12 13

14

15 16

17

18
1920

21

22
23

24

25
26

27

28

29 30

31

32

33
34

Figure 3.14: PageRank of
Zachary’s karate club network.
The size of the nodes denotes the
PageRank scores of the network.

centrality measures indicate importance, i.e., nodes 2, 3, 9

and 32 for example.

k = K.copy()

k.remove_nodes_from([’2’, ’3’, ’32’, ’9’])

The result of this removal can be seen in Figure 3.15. It is

clear that a number of connections have disappeared in this

reduced network and these individuals can be thought of as We can remove nodes with

remove_nodes_from and provide

a list with the nodes we want

expunged.

being important for the cohesion of the network.

The clustering coefficient for the nodes in the karate

network can be obtained with the clustering function.

Notice that the result is a dictionary where the keys are the

individual nodes and the values are the clustering

coefficients:

advanced data science and analytics with python 181

1

45

6

7 8

10

11

12 13

14

15 16

17

18
1920

21

22
23

24

25
26

27

28

29 30

31

33
34

Figure 3.15: Reduced network for
Zachary’s karate club. We have
removed nodes 2, 3, 9 and 32 that
are important for the cohesion of
the network. The size of the nodes
denotes the degree centrality of
the nodes.

> ccoeff = nx.clustering(K)

> print(ccoeff[’1’])

0.15

The average clustering coefficient is given by the

average_clustering function:

Calculate the clustering

coefficient of the network with

average_clustering.

> avg_ccoeff = nx.average_clustering(K)

> print(avg_ccoeff)

0.5706384782076823

Now that we started looking at removing nodes and at the

clustering of the network, we can consider calculating the

182 j. rogel-salazar

k-components of the karate club. The k_components function Remember that a k-component is

a maximal subgraph with, at least,

connectivity k.
enables us to do this in NetworkX.

components = nx.k_components(K)

Figure 3.16: k-components of
Zachary’s karate club network.The result is a dictionary with connectivity level k as key

and a list of sets of nodes that form a k-component of level k.

For instance, the network has one single 4 level component

and is given by:

advanced data science and analytics with python 183

> print(components[4])

[{’1’, ’14’, ’2’, ’3’,

’31’, ’33’, ’34’, ’4’, ’8’, ’9’}]

We can see the different k-components of Zachary’s karate

club network in Figure 3.16.

It is also possible to answer the question regarding the fully

connected components in the network, in other words the

cliques. As you can imagine, NetworkX provides a way to

find the cliques: find_cliques.

4

1

2

8 3

Clique number 0

4

1

2

314

Clique number 1

30

24

33
34

Clique number 2

9

31

33

34

Clique number 3

Figure 3.17: Some of the cliques in
Zachary’s karate club network.

cl = nx.find_cliques(K)

The result is an iterator over maximal cliques, providing a

list of nodes in the network. You can verify that there are 36

cliques and we show 4 of these in Figure 3.17.

184 j. rogel-salazar

There are several ways to detect communities in the

network. One simple way is to look at hierarchical

clustering which we discussed in Chapter 7 of Data Science

and Analytics with Python17 where we learnt how to 17 Rogel-Salazar, J. (2017). Data
Science and Analytics with Python.
Chapman & Hall/CRC Data
Mining and Knowledge Discovery
Series. CRC Press

construct dendrograms. Let us use the shortest path lengths

between the nodes in our network:

path_length = nx.all_pairs_shortest_path_length(K)

We will now use this information to get a distance measure

between the nodes and build a dendrogram:

We are using scipy to calculate

hierarchical clustering in our

network.

n = len(K.nodes())

distances = np.zeros((n, n))

from scipy.cluster import hierarchy

from scipy.spatial import distance

for u, p in path_length:

for v, d in p.items():

distances[int(u) - 1][int(v) - 1] = d

sd = distance.squareform(distances)

h = hierarchy.average(sd)

The resulting dendrogram can be seen in Figure 3.18 where

we can see a hierarchy of 2 and then 4 clusters, or

communities.

We discussed in this chapter how the Girvan-Newman The girvan_newman()

function in community from

networkx.algorithms does what it

says on the tin.

algorithm discovers communities in a network. NetworkX

provides us with a function to do just this: girvan_newman()

in community.

advanced data science and analytics with python 185

Figure 3.18: Hierarchical
clustering over Zachary’s karate
club network.from networkx.algorithms import community

comp = community.girvan_newman(K)

communities = tuple(sorted(c) for c in next(comp))

The algorithm has found 2 communities in the network:

The function returns an iterator

over tuples, and each tuple is a

sequence of communities.

> len(communities)

2

Let us add this information to the metadata of our network.

First let us create two subgraphs, one for each community:

186 j. rogel-salazar

c_1 = K.subgraph(communities[0])

c_2 = K.subgraph(communities[1])

1

2

3

45

6

7 8

9

10

11

12 13

14

15 16

17

18
1920

21

22
23

24

25
26

27

28

29 30

31

32

33
34

Figure 3.19: Communities
discovered by the Girvan-Newman
algorithm on Zachary’s karate
club network. Notice that nodes 3
and 9 have been assigned to John
A.’s faction.

We can now use the nodes in each community to add a new

attribute to our network:

This calculation could be reduced

to a single for loop. See next

section for this.

comm = {}

for c in c_1:

comm[str(c)] = ’community 1’

for c in c_2:

comm[str(c)] = ’community 2’

nx.set_node_attributes(K, comm, ’comm’)

advanced data science and analytics with python 187

In Figure 3.19 we can see the plot of the network with the

nodes coloured by the community to which they were

assigned by the algorithm. We can see that the network

looks roughly the same as that in Figure 3.8. However, if Girvan-Newman has found that

two nodes would naturally switch

sides. This confirms explanations

provided by Zachary.

you closely inspect the nodes you will see that nodes 3 and

9 have been assigned to John A.’s faction and not to Mr. Hi.

We knew about node 9 and his black belt test, perhaps node

3 had similar reasons to join one group over the other.

Finally, let us see what the Louvain algorithm has to say

about the communities in Zachary’s karate network. At

the time of writing, the Louvain algorithm is not part of

NetworkX. Instead, you can install the package with pip in

your command line as follows: Currently the Louvain algorithm

needs to be installed separately.

> pip install python-louvain

Information about the implementation can be obtained

in the following GitHub repository: https://github.com/

taynaud/python-louvain/. You will notice that the module

is actually called community and we aim to find the best

partition: best_partition calculates the

partition that maximises the

modularity using the Louvain

algorithm.
import community

louvain = community.best_partition(K)

The result is a dictionary where the keys are the nodes and

the values correspond to the community to which the nodes

have been assigned. We can take a look at the communities

discovered in Figure 3.20.

https://github.com/taynaud/python-louvain/
https://github.com/taynaud/python-louvain/

188 j. rogel-salazar

1

2

3

45

6

7 8

9

10

11

12 13

14

15 16

17

18
1920

21

22
23

24

25
26

27

28

29 30

31

32

33
34

Figure 3.20: Communities
discovered by the Louvain
algorithm on Zachary’s karate
club network. We have four
communities denoted by different
shades of grey.

We can take a look at what nodes have been assigned to

each of the four communities that the algorithm has

discovered. Let us navigate the dictionary and filter the

nodes per community:

The result is returned as a

dictionary.

for i in set(louvain.values()):

print(’Community ’.format(i))

members = [n for n in louvain.keys()\

if louvain[n] == i]

print(members)

For completeness, let us show the result of the code above.

We can see how each community contains non-overlapping

nodes:

advanced data science and analytics with python 189

Community 0

[’1’, ’2’, ’3’, ’4’, ’8’, ’10’, ’12’, ’13’, ’14’,

’18’, ’20’, ’22’]

Community 1

[’5’, ’6’, ’7’, ’11’, ’17’]

Community 2

[’9’, ’15’, ’16’, ’19’, ’21’, ’23’, ’27’, ’30’,

’31’, ’33’, ’34’]

Community 3

[’24’, ’25’, ’26’, ’28’, ’29’, ’32’]

Let us finish this section by mentioning that the karate

In this case, we have four

communities. Notice that we

start counting in a Pythonic style

— from 0.

club network we have been playing with is also part of

NetworkX and you can load it as follows:
You will be glad to know that

Zachary’s karate club network is

included in NetworkX.
G = nx.karate_club_graph()

Please note that in this graph the nodes have been labelled

in a Pythonic style starting from 0: Hi is node 0 and John A.

is node 33.

3.4.2 In a Galaxy Far, Far Away: Central Characters in a

Network

From ancient Japan to galaxies far, far away..., it is

widely known that George Lucas is a fan of Akira From ancient Japan to galaxies far,

far away.Kurosawa’s work and the influence of films such as The

Hidden Fortress from 1958 is patent in the story of Star Wars,

from the spiritual elements of the Force to the use of swords

190 j. rogel-salazar

in battle and the armour of Lord Vader himself. Much has

been written about these influences, and in this case we are

interested in finding out more about the interactions among

our favourite characters in this space opera.

The first step in the process is to get hold of the data that we

will use to analyse our characters. In this case, we will be

using data from the work that Evelina Gabasova18 has done 18 Gabasova, E. (2016).
Star Wars social network.
https://doi.org/10.5281/
zenodo.1411479

in a series of blog posts. The nodes in the network represent

our beloved characters. The connections between them

represent interactions between the characters in the form of

dialogue in the films scenes. The data can be obtained

directly from Gabasova’s reference above. For completeness,

a GML format file with the network can be obtained at

https://doi.org/10.6084/ m9.figshare.7993292.v119 19 Rogel-Salazar, J. (2019a,
Apr). Star Wars Network.
https://doi.org/10.6084/
m9.figshare.7993292.v1

with the same information as the original JSON files

provided by Gabasova.

The network contains information for Episodes I through to

VII and it is an undirected graph. The edges in the network

are weighted by the amount of dialogue between the

characters. As you may imagine, there are some

assumptions that Gabasova has made to keep the network

manageable. For example, separate nodes are kept for

Anakin Skywalker and Darth Vader. But those for the

Emperor and Senator Palpatine, or Queen Amidala and aka Darth Sidious too!

Padmé have been merged. Similarly, nonspeaking characters

such as R2-D2 and Chewbacca were added via mentions in

the screenplay. For further information on these aspects,

please refer to the excellent post from Evelina Gabasova.

https://doi.org/10.6084/m9.figshare.7993292.v1
https://doi.org/10.5281/zenodo.1411479
https://doi.org/10.6084/m9.figshare.7993292.v1
https://doi.org/10.6084/m9.figshare.7993292.v1
https://doi.org/10.5281/zenodo.1411479

advanced data science and analytics with python 191

As usual, let us load some useful libraries, including

NetworkX, matplotlib, Pandas and numpy:

These libraries will be with you.

Always...

import networkx as nx

import numpy as np

import matplotlib.pyplot as plt

The network can be loaded as follows:

fname = ’starwars_network.gml’

S = nx.read_gml(fname)

As we did for the karate network, let us print some

information about the Star Wars network:

Our dataset contains 112

characters with 450 edges and the

average degree for this Universe is

8.0357.

> print(nx.info(S))

Type: Graph

Number of nodes: 112

Number of edges: 450

Average degree: 8.0357

We have 112 characters with 450 edges and the average

degree for this Universe is 8.0357, a bit higher than the

six-degrees of separation! Let us take a look at the network.

Before we do that, given the number of characters, it would

be good to pick out some of the nodes that we may be

interested in tracking. We will define a list of main

characters as follows:

192 j. rogel-salazar

main_characters = [’Darth Vader’,

’Emperor (Palpatine)’, ’Luke’, ’Leia’,

’Yoda’, ’Anakin’, ’R2-D2’, ’Han’,

’Chewbacca’, ’Padme (Queen Amidala)’,

’Poe’, ’BB-8’, ’Jabba’, ’Count Dooku’,

’Jar Jar’, ’Rey’, ’Darth Maul’,

’Admiral Ackbar’, ’Snoke’, ’Qui-Gon’,

’Kylo Ren’, ’Obi-Wan’, ’C-3PO’,

’Darth Maul’, ’Niv Lek’, ’Boba Fett’]

We will use this list to create a dictionary so that we can

Oh, my dear friends. How I’ve

missed you!

label these characters in the plots we will create as we go

along this analysis:

Plotting labels in our network is

managed with a dictionary.

labels = {}

for character in main_characters:

labels[character] = character

In the original network, each node is assigned a value that

represents the number of scenes where the character speaks,

similarly a colour is also assigned. Although the plots in

this book are in black and white, you can see the results in

full colour in your machine. Let us extract these attributes

from the network so that we can use them in our plots:

We extract node attributes such as

size and colour from the network

to create our plot.

node_sizes = [3 * float(v) for v in

nx.get_node_attributes(S, ’value’).values()]

colors = [c for c in

nx.get_node_attributes(S, ’colour’).values()]

advanced data science and analytics with python 193

We mentioned above that the edges are weighted and we

can use the values to represent the thickness of the

connections in the network:

We read the value for each existing

connection in the network.

edges = S.edges()

edge_width = [S[u][v][’value’] for u, v in edges]

We know that both Jedis and Siths are able to use the Force

and very appropriately we can use a force-directed layout to

plot our network.

May the (spring) Force be with

you!
pos_force=nx.spring_layout(S)

We are now ready to use the Force too:
But our training is not yet

complete!

We are plotting the nodes, edges

and labels separately, but in the

same figure and the same layout.

nx.draw_networkx_nodes(

S, node_color=colors,

with_labels=False, node_size=node_sizes,

alpha=0.9, pos=pos_force)

nx.draw_networkx_edges(S, alpha=0.15,

color=’gray’, width=edge_width, pos=pos_force)

nx.draw_networkx_labels(S, labels=labels,

font_size=10, font_color=’#000099’,

font_weight=’bold’, pos=pos_force)

I could not help myself playing with the network and

decided to show an initial rendering inspired by the famous

Death Star space station. We can see the network in Figure

3.21.

194 j. rogel-salazar

Figure 3.21: Star Wars network
covering Episodes I-VII. Layout
inspired by the famous Death Star.

advanced data science and analytics with python 195

Degree centrality is the first measure we will look at when

analysing our network.

Remember that the degree

centrality tells us how well

connected a node is to the rest of

the network.

degree_centrality = nx.degree_centrality(S)

nx.set_node_attributes(S, degree_centrality, ’dc’)

The distribution of the degree centrality is shown in Figure

3.22 where we can see only a handful of characters with

degree centralities higher than 0.20 and a large number of

nodes with very small scores in this centrality measure.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Degree Centrality

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Nu
m

be
r o

f S
ta

r W
ar

s C
ha

ra
ct

er
s

Figure 3.22: Distribution of the
degree centrality for the Star Wars
network.Before we continue, in order to make our life a bit easier, let

us define a function to plot networks in a more

straightforward fashion. We will pass a network object, an

196 j. rogel-salazar

attribute that will be encoded as the node sizes, a threshold

to filter the network, a factor to modify the size of the nodes,

the position where the nodes will be plotted and the width

of the edges in the network. We will also accept a named

parameter to show the labels of the chosen nodes. The

function is as follows:

First we check if a set of labels is

provided.

We then select the nodes that meet

the threshold provided and obtain

a subgraph.

We use the colour attribute to

render our nodes.

We then draw the nodes with the

appropriate size.

Then the edges.

And finally, the labels.

def plot_graph(G, att, att_threshold, size_factor,

position, edge_width, **kwargs):

labels = kwargs.get(’labels’, None)

nodes = [x for x, y in G.nodes(data=True)

if y[att] >= att_threshold]

sg = G.subgraph(nodes)

gcolors = [c for c in

nx.get_node_attributes(sg,’colour’).values()]

nx.draw_networkx_nodes(sg, node_color=gcolors,

node_size=[size_factor * v for v in

nx.get_node_attributes(sg, att).values()],

pos=position, alpha=0.5)

nx.draw_networkx_edges(sg, alpha=0.2,

color=’gray’, pos=position,

width=edge_width)

nx.draw_networkx_labels(sg, labels=labels,

pos=position)

advanced data science and analytics with python 197

Using the same function that we defined in the previous

section to obtain the top nodes for a centrality measure, we

can see the top 5 characters by degree.

Figure 3.23: Degree measure of
the Star Wars network. The size
of the nodes denotes the degree
centrality of the node.

> get_top_nodes(degree_centrality)

{’Anakin’: 0.3783783783783784,

’Obi-Wan’: 0.3333333333333333,

’C-3PO’: 0.32432432432432434,

’Padme (Queen Amidala)’: 0.3063063063063063,

’Qui-Gon’: 0.24324324324324323}

It i s not surprising to see there Anakin and Obi-Wan, but

Anakin and Obi-Wan are the

characters with the highest

number of connections.

Qui-Gon!?!? We can see the filtered network for degree

centrality in Figure 3.23 and the code is as follows:

198 j. rogel-salazar

plot_graph(S, ’dc’, 0.04, 5000, pos_force,

edge_width)

The bridges in the network can be obtained with the help of

You see, it only took a line with

our new function!

the closeness centrality, let us take a look:

Closeness centrality shows us the

bridge nodes in the network.

closeness_centrality = nx.closeness_centrality(S)

nx.set_node_attributes(S, closeness_centrality,

’cc’)

nodes_cc = get_top_nodes(closeness_centrality)

The bridge characters are:

In this case, we have C-3PO and

Obi-Wan as those bridges.

> print(nodes_cc)

{’C-3PO’: 0.5619021082938609,

’Obi-Wan’: 0.559020559020559,

’Anakin’: 0.5505505505505506,

’Luke’: 0.526613570091831,

’R2-D2’: 0.5166303744502797}

It is great to see both C-3PO and R2-D2 appear in the top 5 These were indeed the droids we

were looking for!characters by closeness, together with Luke and Obi-Wan.

Let us see the eigenvector centrality:

eigenvector_centrality=nx.eigenvector_centrality(S)

nx.set_node_attributes(S, eigenvector_centrality,

’ec’)

nodes_ec = get_top_nodes(eigenvector_centrality)

advanced data science and analytics with python 199

The top 5 characters by eigenvector centrality are:

> print(nodes_ec)

{’Anakin’: 0.29656614921513724,

’Obi-Wan’: 0.2810463592564618,

’C-3PO’: 0.2753430975993982,

’Padme (Queen Amidala)’: 0.2580025161393472,

’Qui-Gon’: 0.22896839403488994}

Let us turn out attention to the PageRank for our network:

We have Anakin, Obi-Wan and

C-3PO in the first three places.

pagerank_centrality = nx.pagerank(S, alpha=0.9)

nx.set_node_attributes(S, pagerank_centrality,’pr’)

nodes_pr = get_top_nodes(pagerank_centrality)

If we look at the top 5 characters by PageRange we have

roughly the same order, but instead of having Qui-Gon in

5th place, we have Luke:

The order for PageRank is similar,

but we finally get to see Luke!

> print(nodes_pr)

{’Anakin’: 0.042419290139533466,

’Obi-Wan’: 0.03851822264942938,

’C-3PO’: 0.035812500857126256,

’Padme (Queen Amidala)’: 0.03369795977341906,

’Luke’: 0.029121630268795225}

The network resulting from encoding the eigenvector

centrality in the size of the nodes and filtering for nodes

with values higher than 0.06 can be seen in Figure 3.24.

200 j. rogel-salazar

plot_graph(S, ’ec’, 0.06, 5000,

pos_force, edge_width)

Figure 3.24: Eigenvector centrality
for the Star Wars network. The
size of the nodes denotes the
eigenvector centrality of the node.

Figure 3.25: PageRange for the
nodes in the Star Wars network.
The size of the nodes denotes the
PageRank score for the node.

advanced data science and analytics with python 201

The network encoding the PageRank scores for nodes with

values higher than 0.006 is show in Figure 3.25.

plot_graph(S, ’pr’, 0.006, 25000,

pos_force, edge_width)

It is an inescapable fact of the Star Wars story that Anakin

Skywalker gets seduced by the Dark Side of the Force and

we can think of the two characters as being one and the Remember, fear is the path to the

Dark Side.same person. Let us consider the network where the nodes

for these two central characters gets merged. The merging

can be done with NetworkX with the contracted_nodes

function:

V = nx.contracted_nodes(S, ’Darth Vader’, ’Anakin’)

Figure 3.26: Vader networks
for the following centrality
measures: Degree centrality,
eigenvector centrality, PageRank
and betweenness.

202 j. rogel-salazar

Similar calculations to the ones carried out above can be

done on this new network. The results for degree centrality,

eigenvector centrality, PageRank and betweenness can be

seen in Table 3.1. As we can see the rankings are very stable,

keeping the first three places for Darth Vader, Obi-Wan

and C-3PO, we then have Padmé, Luke, Qui-Gon and Han, C-3PO!! Not R2!! Really!?!?

followed by Leia, Chewbacca, the Emperor, R2-D2, Poe, and

even Jar Jar.... Plots of the resulting (filtered) networks can Jar Jar... Oh well!!!

be seen in Figure 3.26.

Ranking
Degree
Centrality

Eigenvector
Centrality

PageRank Betweenness

1
Vader
(0.4909)

Vader
(0.3559)

Vader
(0.0561)

Vader
(0.2843)

2
Obi-Wan
(0.3273)

Obi-Wan
(0.2689)

Obi-Wan
(0.0381)

Obi-Wan
(0.1627)

3
C-3PO
(0.3182)

C-3PO
(0.2637)

C-3PO
(0.0352)

C-3PO
(0.1391)

4
Padmé
(0.3091)

Padmé
(0.2529)

Padmé
(0.0344)

Luke
(0.1309)

5
Qui-Gon
(0.2455)

Qui-Gon
(0.2243)

Luke
(0.0284)

Han
(0.104)

6
Luke
(0.2364)

R2-D2

(0.2166)
Qui-Gon
(0.0273)

Poe (0.073)

7
Han
(0.2364)

Emperor
(0.1966)

Han
(0.0268)

Chewbacca
(0.0681)

8
Leia
(0.2273)

Jar Jar
(0.183)

Leia
(0.026)

Emperor
(0.0641)

9
Jar Jar
(0.2182)

Luke
(0.1809)

Jar Jar
(0.0251)

Padmé
(0.0621)

10
R2-D2

(0.2)
Han
(0.1765)

Emperor
(0.0226)

Leia
(0.0586)

Table 3.1: Character rankings for
the most central characters in the
Star Wars saga given by various
centrality measures.

advanced data science and analytics with python 203

We can definitely see who the central characters in this

galaxy are and how they interact. The story of the Light

versus the Dark Side of the Force is right there with Darth This is definitely not a trap!

Vader and Obi-Wan in the first places. The presence of the

droids in the first 10 places plays homage to the influence

that the feudal peasants from Kurosawa’s film The Hidden

Fortress.

The data we have used contains information from Episodes

I through VII, and having characters from the prequel (I-III)

in the form of Qui-Gon, Padmé and even Jar Jar tells us

that part of the story. It is interesting to see Poe as the only

character from Episode VII that made the cut in the first 10

places and only for the betweenness centrality. This tells us Rey is not in the first 10 places.

But then again, we only have data

up to episode VI.
about his importance in bringing together other characters

in the story. This makes sense as he meets Finn first while

escaping from the First Order, even giving him a name (FN-

2187 is not deemed good enough) and introduces him to

the rest of the resistance. Interesting to see that although

the Emperor is an important character in the story, his

presence is not outwardly revealed. This makes sense when

we consider the plottings and cover-ups he had to concoct to

get his plans to fruition.

We finish this section by looking at the communities that

arise from the connections in the network. Will we be able

to distinguish the Dark Side from the Light one? Can we Light versus Dark Side? Not quite,

as we shall see.tell which are the shady characters? Let us take a look. We

start by reducing the number of nodes in the network by

concentrating on those that have degree centralities higher

than 0.05:

204 j. rogel-salazar

nodes = [x for x, y in V.nodes(data=True)

if y[’dc’] >= 0.05]

VDC = V.subgraph(nodes)

We can apply the Girvan-Newman algorithm as follows:

We filter the graph for nodes with

degree centrality higher than 0.05.

gn_side = community.girvan_newman(VDC)

sw_sides = tuple(sorted(c) for c

in next(gn_side))

In this case, we have found two communities. We will now

add this metadata to the network itself:

Figure 3.27: Star Wars sides
(communities) obtained with the
application of the Girvan-Newman
algorithms.

comm = {}

for i, side in enumerate(sw_sides):

for character in side:

comm[str(character)] = ’side {0}’.format(i)

nx.set_node_attributes(VDC, comm, ’side’)

advanced data science and analytics with python 205

If we colour the nodes in the network by the side that was

found by the algorithm, we end up with the network shown

in Figure 3.27. As we can see, it is perhaps telling us more

about the episodes in the story, with the characters from The communities tell us about the

different chapters in the story, not

about the two sides of the Force.
Episodes I-III on one side, and the ones from IV-VI and VII

on the other one. This makes sense when we consider the

meaning of the edges in the network: They are dialogue

interactions among characters; we know that Rey interacts

with Han and Luke, but Poe never talked to Yoda or Padmé.

3.5 Summary

In this chapter we have covered many of the

fundamental concepts used in the analysis of networks,

whether social or otherwise. We have seen the wide variety

of applications that networks have and the discussion was

framed in terms of social network analysis, although I trust

you can see the relevance in other areas of interest.

The work of the brilliant Leonhard Euler opened up a new

way of understanding relationships between actors in a

network. These actors are referred to as nodes or vertices,

and the ties are known as edges. We understand the

difference between directed and undirected graphs as well

as some of the characteristics that make these networks

interesting. Graph theory provides the basis to understand

the relationships encoded in networks of interest.

We discussed the ideas behind a small-world network,

leading to the popular idea of the six degrees of separation

206 j. rogel-salazar

proposed by Milgram in the 1960s. Similarly, we talked

about related measures such as the Bacon and Erdös

numbers as ways to gauge the distance between actors,

literally in the case of the Bacon number, in a network.

Encoding the information of a network in the form of a

graph enables us to represent it using matrices and we

described how an adjacency matrix can be used for this

purpose. We covered other formats to encode this

information in terms of edge and adjacency lists. In this way

we introduced concepts around graphs such as trails, paths,

cycles and semi-walks. We also described the use of

NetworkX as a tool to analyse graph/network data with

Python.

Furthermore, we described different measures that provide

information about the importance of agents in the network.

Measures such as degree centrality, closeness, betweenness,

eigenvector centrality and PageRank let us describe the

relationships in the graph and establish patterns that

otherwise would not be easy to spot. We talked about

cliques and clustering coefficients leading to the discussion

of community detection with Girvan-Newman’s and

Louvain algorithms.

We finished the chapter with the application of these ideas

to a couple of networks. The first one is the data provided

by Wayne W. Zachary about a karate club with an infighting

issue leading to the split of the club. The second one covers

the interactions of the characters in the Star Wars films. So,

do as Yoda says and pass on what you have learnt.

4

Thinking Deeply: Neural Networks and Deep

Learning

An artificial neural network (ANN) is effectively a

computing system that takes into account inputs that are

combined, typically in a nonlinear manner, to calculate

outputs that can be compared to expected outcomes. The

motivation behind ANNs is loosely inspired by the For simplicity, we will also refer to

them as neural nets.biological neural networks that constitute animal brains.

The fact that expected outcomes are available to us should

immediately make our Jackalope data scientist brains

consider using neural nets for supervised learning. In that

sense, neural nets are said to be able to learn how to carry

out tasks based on the label data provided (data samples), Learning without having to be

programmed!without the need of being specifically programmed with

rules.

Before we get into the deep end, understanding how neural

networks work, we will first cover some historical aspects of

208 j. rogel-salazar

their development. Then we will explain the general

architecture of a neural network in terms of layers and

nodes, cover forward and backward propagation and finish

the chapter with a discussion on convolutional and

recurrent neural networks.

4.1 A Trip Down Memory Lane

Given all the reported achievements accomplished

with the use of neural networks, we may think that the field

is quite new. However, a lot of the ideas behind modern

neural network implementations can be traced back to

the 1940s. A good starting point is the work of McCulloch

Some ideas may be even older,

but we need to draw the line

somewhere.

and Pitts1 taking an electrical engineering approach to 1 McCulloch, W. S. and Pitts,
W. (1943). A logical calculus
of the ideas immanent in
nervous activity. Bull. of Math.
Biophysics 5(4), 115–133

describing the use of logical units to model an artificial

neuron. This can be seen as the basis of what we now call

artificial neural networks. The inspiration was indeed the

mimicking of the functions of a brain through electrical

circuits, culminating with the coinage of the term artificial

intelligence by John McCarthy.

The neuron doctrine as proposed around 1888 by Spanish

Nobel Prize winner Santiago Ramón y Cajal is the basis of

modern neuroscience. It states that neurons are individual The inspiration is indeed the

electrochemical activity of

biological neurons.
separate cells and they behave as biochemically distinct cells

rather than a single entity in an interlinked network. A

crude approximation to model some of the functions of the

human brain is the electrical connectivity that takes place

between the 10 billion plus neurons that compose it. The

neuronal cell body, or soma, receives electrochemical signals

advanced data science and analytics with python 209

(input) via the neuron’s dendrites. If the combined signal

received meets a given threshold, the neuron transmits a

new signal (output) along its axon to other neurons’

dendrites. This is the process the artificial neurons from

McCulloch and Pitts emulated.

Continuing with the inspiration of a brain as a model, Frank

Rosenblatt developed the concept of the perceptron2 in which 2 Rosenblatt, F. (1962). Principles of
neurodynamics: perceptrons and the
theory of brain mechanisms. Report
(Cornell Aeronautical Laboratory).
Spartan Books

a neuron receives information from other neurons in the

form of electrical impulses of varied strengths (positive or

negative). The receiving neuron combines these impulses

and if the result is larger than a certain given threshold the

neuron “fires”, transmitting the resulting impulse to other

neurons. As we shall see in the rest of this chapter, today

we refer to this as a one-layer neural network. Interestingly,

the perceptron was conceived to be a custom-made machine, You can visit a perceptron in

Washington D.C.rather than an algorithm. If you find yourself in Washington

D.C., you can pay a visit to the Mark I Perceptron in the

Smithsonian Institution.

The perceptron combines the receiving inputs as a weighted

sum and the firing happens if the sum exceeds the threshold

C. With inputs x1 and x2 and weights w1 and w2 the output

of the perceptron can be written as follows:

The perceptron is able to separate

regions linearly.Poutput =







1, if w1x1 + w2x2 > C,

0, if w1x1 + w2x2 ≤ C.
(4.1)

We are effectively separating two regions in a plane with

a line and thus the perceptron is able to separate regions

linearly.

210 j. rogel-salazar

During the 1960s other advances helped bring these early

neurons to be applied in the real world. For example,

Bernard Widrow and Marcian Hoff devised the first We will expand on feedforward

nets in Section 4.2.3.learning rules for feedforward networks with multiple

adaptive elements, naming their models “ADALINE” and

“MADALINE”. The rules relied on the examination of the ADAptive LINear Elements

and Multiple ADAptive LINear

Elements, respectively.
values prior to adjusting the weights. The weight

adjustment is proportional to the previous value times the

error divided by the number of inputs. The idea is that even

if one perceptron has a large error, it is possible to adjust the

weights so as to distribute the error to adjacent perceptrons.

With a perceptron, we can implement circuits that recreate

operators such as AND and OR. However, it is not possible

to implement a nonlinearly separable operation like XOR.

Marvin Minsky and Seymour Papert showed3 that not only 3 Minsky, M., S. Papert, and
L. Bottou (2017). Perceptrons:
An Introduction to Computational
Geometry. The MIT Press. MIT
Press

it was not possible to compute an XOR operation with a

single perceptron, but also provided arguments about it

being achievable with multiple layers of perceptrons. The

idea is to combine multiple neurons to perform more

complicated tasks, if only we can add another and another

layer of neurons to our model. As it turns out, the learning

algorithm proposed by Rosenblatt did not work for

multilayer neural nets.

The supervised nature of the task means that the correct

output expected is only specified for the final layer. We can

use this information to adjust the weights for the layer in

question, but... how do we get to the hidden layers

sandwiched between the output and input ones? The

We will cover backpropagation in

Section 4.3.3.

answer, i.e., backpropagation, will have to wait for the lift of

advanced data science and analytics with python 211

the first AI winter to be widely spread. Nonetheless, the

ideas behind it were floating around much before then.

In the early 1970s the work of Paul Werbos to extend

beyond MADALINE enabled the development of a

backpropagation algorithm4. This was largely unknown 4 Werbos, P. (1994). The Roots
of Backpropagation: From Ordered
Derivatives to Neural Networks and
Political Forecasting. Adaptive
and Cognitive Dynamic Systems:
Signal Processing, Learning,
Communications and Control.
Wiley

until 1986 when Rumelhart, Hinton, and Williams

rediscovered it5 and formalised it. They were able to set a

5 Rumelhart, D. E., G. E. Hinton,
and R. J. Williams (1986).
Learning representations
by back-propagating errors.
Nature 323(6088), 533–536

clear framework for the technique, finally making it the

well-known methodology we have today. Later in Section

4.3.3 we will address in more detail the workings of

backpropagation. In the meantime, it suffices to say that the

key aspect in its development is the realisation that if the

neurons are not perceptrons per se, but instead they are able

to compute their output with a nonlinear, differentiable

function, then it is possible to use the derivative to minimise

the errors incurred during training. In this way, with the aid

of the well-known chain rule we can calculate the derivative

for all the neurons in the prior layers.

With the advent of the backpropagation algorithm it was

possible to train mutilayer architectures, opening the door to

the development of convolutional neural networks (CNNs),

first used by Yann LeCun et al.6 to recognise hand-written 6 LeCun, Y., Boser, B., Denker, J.
S., et al. (1989). Backpropagation
applied to handwritten zip
code recognition. Neural
Computation 1(4), 541–551

digits with application in optical character recognition. By

the end of the 1980s the interest in neural networks slowed

down again as the approach to-date was not able to scale.

Instead, algorithms such as the support vector machine We discussed SVMs on Chapter 9

of Data Science and Analytics with

Python.
gained prominence and it was not for another decade or so

that neural nets regained interest.

212 j. rogel-salazar

In 1997 a recurrent neural network (RNN) framework

known as long short-term memory (LSTM) was proposed by

Hochreiter and Schimdhuber7, improving the efficiency and 7 Hochreiter, S. and Schmidhuber,
J. (1997). Long short-term memory.
Neural. Comput. 9(8), 1735–1780practical use of RNNs as we shall discuss in Section 4.4.3.

By the mid-2000s, the term deep learning became ever more

popular thanks to the use of the word “deep” by Geoffrey

Hinton8,9 and others to describe their approach to the 8 Hinton, G. E., Osindero, S., and
Teh, Y.-W. (2006). A Fast Learning
Algorithm for Deep Belief Nets.
Neural Computation 18, 1527–1554
9 Hinton, G. E. and
R. Salakhutdinov (2006). Reducing
the dimensionality of data with
neural networks. Science 313 5786,
504–7

development of large-scale neural networks. There are many

more advances that merit more in-depth analysis than we

can do justice here, and largely speaking, areas of research

in Transfer Learning, Generative Adversarial Networks

(GANs), Reinforcement Learning, hardware and software

developments will give us more food for thought in the

years to come.

All in all, for the different types of neural network

architectures we have mentioned above, the analogy of

neurons connecting with each other via their axons and

dendrites is a first image that comes to mind. We can

therefore start our journey by describing a general neural

network architecture as a collection of nodes connected with A neural network is a collection of

nodes arranged in layers, enabling

information to flow from one layer

to the next.

each other so as to enable the transfer and manipulation of

information. The nodes are aggregated into layers and thus

the information flows from one layer to the next in a

directed manner. A typical neural network architecture can

be seen in Figure 4.1 where the nodes are represented by

open circles, and the connections between them are shown

as directed edges.

As we can imagine, the graphical representation we have is

similar to the graphs we discussed in Chapter 3. In this case

advanced data science and analytics with python 213

Figure 4.1: Neural network
architecture with a single hidden
layer.we have a directed graph where the nodes belong to tiered

layers and the information in the network flows in a single

direction from one layer to the next.

Each of the edges in the network carries a weight and each

node is able to take the inputs provided and combine them Each edge in the graph has its

own weight, and adjusting those

weights is the learning process for

a neural net.

before passing them to the next tier of nodes. The learning

process enables us to adjust or “learn” the optimal weights

for the edges as the training proceeds, so that we make

predictions with the network. Let us now go deeper inside

this architecture.

214 j. rogel-salazar

4.2 No-Brainer: What Are Neural Networks?

As we have seen in the previous section, artificial neural

networks can be understood in terms of their diagrammatic

representations as graphs. Let us start delving into the

workings of these graphs and see how they are able to

learn patterns, see images, recognise speech and capture our

collective imagination.

Figure 4.2: An artificial neural
network takes up an input and
combines the contributions of
the nodes to calculate an output
ŷ with the aid of a nonlinear
function with the sum of its
inputs.

The first thing to point out is that, unlike the graphs that

we analysed in Chapter 3, the information present in the

graph is not embedded in the architecture of the network.

Instead an external input is required. This information is

then used to compute an output with a function of the sum Typically a nonlinear function.

of its inputs. We can represent this as shown in Figure 4.2

where we can see n nodes providing a contribution to the

calculation of the output ŷ via a function f (·). Notice that

each edge i has its own weight wi.

advanced data science and analytics with python 215

The network architecture that we have in place is a weighted

directed graph and our aim is to adjust the edge weights

wi as the learning takes place. We can think of this process

as having a set of dials to adjust the strength of a signal at

a given connection in the network. As it is the case in its

To continue using the brain

analogy, this would be the

strength of the synapses between

neurons.
biological counterpart, the synapses between neurons may

actually fire, or be activated, if the aggregate signal is above

a certain threshold.

4.2.1 Neural Network Architecture: Layers and Nodes

An important feature of the architecture of our neural

networks is the fact that the nodes are arranged in layers. In

other words, the information in the network flows from one

layer to the next in the direction prescribed by the directed

edges. We count the number of layers starting effectively

from zero. That first layer is usually called the input layer How Pythonic... but actually just a

happy coincidence!and it is made out of passive nodes that take the input. The

last layer is usually called the output layer and is made of

active nodes. That is to say that they take the outcomes

of the previous layer and modify the signals received. In

between the input and output layers, we can have any

number of so-called hidden layers. These hidden layers are

also made out of active nodes. In Figure 4.1 we showed a

typical example of a single layer neural network.

Each of the layers in the neural network architecture can

have any number of nodes and as such, both the number of We shall talk about the number of

nodes later in this section.hidden layers as well as the number of nodes in each layer

are a couple of the parameters you need to decide upon first.

216 j. rogel-salazar

As the number of hidden layers in our architecture increases,

the deeper and deeper the input information needs to flow.

I do use the word “deeper” with a bit of intent as this is

Deep learning refers to the use

of neural networks with a large

number of hidden layers.

what gives rise to the term deep learning to describe the

work done with large artificial neural networks. Today, deep

learning architectures have a wide range of applications

including speech recognition, computer vision, automatic

machine translation, text generation, image captioning, etc.

We will talk more about deep learning in Section 4.4.

Different layers in the architecture will perform different

kinds of manipulations and transformations on their

respective inputs. The nodes in the input layer perform no

computation; they simply, but importantly, pass on the

information to the nodes in the first hidden layer. The

hidden nodes carry out computation on the inputs received In other words, the nodes in a

hidden layer.and transfer the result to the next layers, all the way through

to the output layer. This process is usually known as

feedforward where the information moves in one direction

only; there are no cycles or loops. Not yet!

The single layer perceptron that we mentioned in the

previous section is the simplest feedforward neural network:

It does not have hidden layers and it is only capable of
The more layers we add, the

more effectively we can perform

automatic feature engineering.

learning linear separable patterns. As the number of hidden

layers grows, we are able to accomplish more complex tasks

as shown in Table 4.1. The more layers we add, the more

effectively we can perform automatic feature engineering.

We mentioned above that each layer can contain, in

principle, any number of nodes. Deciding how many nodes

we put in each layer is as important as making up our

advanced data science and analytics with python 217

Number
of Hidden
Layers

Capability

0
Capable of representing only linear
separable patterns.

1
Able to approximate any function with
a continuous mapping from one finite
space to another.

2

Able to represent any arbitrary decision
boundary to arbitrary accuracy; can
approximate any smooth mapping to
any accuracy.

3 or more
Complex representations can be learnt
by performing automatic feature
engineering of sorts.

Table 4.1: Capabilities of neural
networks with a different number
of hidden layers.

minds about the number of layers. Although the hidden

Deciding on the number of layers

and the number of nodes in each

is an important step.

layers do not directly interact with the outside world, they

do have a profound impact on the final output returned by

the neural network. On the one hand, having too few nodes

in the hidden layers gives rise to underfitting, as there are

not enough nodes to detect the potential complex patterns

in our data. On the other hand, the presence of too many

nodes can also result in other issues. Overfitting is one of

them, as the extra capacity in the network enables the

system to memorise the attributes in the data, particularly

when the set is not large enough. Even in cases where there

is enough data, we need to take into consideration that the

more nodes we have in the hidden layers results in longer

218 j. rogel-salazar

training times. Some rule-of-thumb recommendations

include having hidden layers with a number of nodes

bounded by the size of the input and output layers. A good

start is having around 60 − 70% of the number of nodes in

the input layer plus the number of nodes in the output layer.

Choosing the size of the hidden

layers is more data art than data

science.

Finally, do not include more than twice the size of the input

layer and remember that the ultimate architecture setup is a

matter of striking a balance, as it is the case in many other

areas of machine learning.

4.2.2 Firing Away: Neurons, Activate!

Now that we have a better understanding of the

architecture of our neural networks, we can delve deeper Pun definitely intended!

into their inner workings. Let us consider a one-hidden

layer neural network as shown in Figure 4.3. Not only is this

architecture able to represent linear functions, but also

nonlinear ones. The input layer has three nodes, one of

which we have marked as bias with a value of 1, the other

two nodes take the values x1 and x2. These inputs are

passed to the next layer along with their associated weights.

Let us take a node in the (first) hidden layer of this neural

network (highlighted in gray). Actually, we can zoom in to

see what is happening there: See Figure 4.4. This hidden We can extend this analysis to a

larger number of nodes.node receives the inputs (1, x1, x2) along with the associated

weights (w0, w1w2) and uses the values to compute the

function f (·) whose argument is a sum of the inputs as

∑ wixi. This function is referred to as the activation function

and we shall talk more about it in the next pages.

advanced data science and analytics with python 219

Figure 4.3: Neural network
architecture with a single hidden
layer, including bias. The inputs to
a node (marked in gray) are used
in conjunction with the weights
wi to calculate the output with
the help of the activation function
f (·).

The process described above is carried out for each of the

nodes in the first layer and the resulting value from the

activation function is used as the input for the next layer,

and so on. In the architecture shown in Figure 4.3, we have

two output nodes. After executing the same process with

the activation function f (·) their results (y1, y2) are the

output of the neural network.

The activation function is a nonlinear function. This is

because we are interested in representing complex,

real-world data with our neural networks. The activation The activation function is a

nonlinear function.function therefore introduces a nonlinearity to the outputs

of the node, enabling the architecture to learn these complex

representations.

We have been talking about the activation function as an

important part of our neural network, but so far we have

not said much about its structure. This is because there may

220 j. rogel-salazar

Figure 4.4: Zooming into one of
the hidden nodes in our neural
network architecture.

be many options available to us. Each of these options offers

different ways in which the inputs are combined, and the

most common activation functions include the following:

• Sigmoid: This function takes a real-valued input and

maps it to a range of values between 0 and 1. The We have encountered this

function in the context of logistic

regression!
sigmoid function is given by the expression below and

we can see a plot in the top panel of Figure 4.5

S(x) =
exp(x)

1 + exp(x)
(4.2)

• Hyperbolic tangent: This function also takes real-valued

inputs and maps them to a range of values in the interval

[−1, 1]. It is effectively a rescaling of the sigmoid function: This is a rescaled sigmoid

function.

tanh(x) = 2S(2x)− 1 =
exp(2x)− 1
exp(2x) + 1

. (4.3)

We can see the shape of the tanh function in the middle

panel of Figure 4.5.

advanced data science and analytics with python 221

Figure 4.5: Some common
activation functions, including
sigmoid, tanh and ReLU.

222 j. rogel-salazar

• Rectified Linear Unit (ReLU): This function places a

minimal threshold of zero to negative inputs, and maps

positive values to themselves:

f (x) = max(0, x). (4.4)

The bottom panel of Figure 4.5 depicts this function

Figure 4.6: A plot of the softmax
function.It may be the case that in our application we are interested

in generating probabilities as the outcomes of the activation

layer. In this case, we can make use of the softmax

activation function. This function is effectively a

generalisation of the sigmoid function. It takes real values As the entries of a softmax

function add up to 1, it can be

used to draw probabilities.
as input and maps them to a probability distribution where

entry is in the range (0, 1]. Furthermore, all the entries add

up to 1. The softmax activation function is given by

Equation C.1 and a plot can be seen in Figure 4.6.

softmax(xi) = σ(zi) =
exp(xi)

∑
N
j=1 exp(xj)

, for i = 1, . . . , k. (4.5)

advanced data science and analytics with python 223

Once we have applied the activation function to the inputs

of the node in question, we are ready to pass the outcome

to the next layer in our neural network. We do this until

we reach the last layer, where the outputs are actually the

predictions made by the entire neural network architecture.

Et voilà!

4.2.3 Going Forwards and Backwards

The output of the neural networks we have discussed

so far has been obtained by taking forward the inputs from

one layer to the next. This kind of neural network is called

a feedforward network and the flow of information goes So far, we have only fed the

information forward from the

input to the output layers.
in one single direction, not allowing for loops or cycles.

Feedback is therefore not possible. What happens if the

response we obtain from training our neural network is not

satisfactory? Well, in the case of a feedforward network, as

described above, there is not much we can do.

Nonetheless, it is possible to consider the following scenario:

Once we have obtained the final output of our neural

network, we can compare it to the labelled data used for

training. If the error is negligible we are done; however, if We would like to be able to learn

from our mistakes.the error is not acceptable we would like to provide this as

feedback to the neural network. In other words, we would

like the neural network to “learn from its mistakes”.

The process to enable this form of learning in a neural

network is known as backward propagation of errors, or

backpropagation for short. Following up the analogy about

learning from our mistakes we are, in a sense, asking the

Or actually the neural network’s

mistakes!

224 j. rogel-salazar

machine to guess the value of the labelled data. The error in OK! estimate...

the guess is calculated and backpropagated so that a better

estimate can be made.

In this way, we are going forwards and backwards, and

forwards again until the error is within an accepted level

of tolerance. The way in which backpropagation estimates Or until we give up...

the error is by minimising a cost function, and therefore we

need to make use of calculus. A well-known optimisation

method used in this kind of tasks is gradient descent.

In the following sections we will cover in more detail the

implementation of backpropagation, but for the time being

let us spend some more time getting familiar with what is

happening at a high level. Let us start with our forward

propagation network as depicted in Figure 4.7, in panel a) We start we the forward

propagation step. Nothing

unusual here.
we have the situation described in the previous section. For

our purposes, we have a neural network with one hidden

layer and three nodes in the input layer.

We need to bring the inputs (and bias) together with the

initial weights w0, w1 and w2 and make the appropriate

calculations with them. In order to track what is happening

to the weights, we are adding the superscript [0] to denote

the initial forward pass. In this way, the weights wi
[0] and

the inputs are combined in the hidden nodes by a given

activation function. The results are then passed forward to

the output layer, where we get a target prediction, in this

We are not explicitly showing the

weights used from the hidden

layer to the output later, but the

same process applies.
case the output is either a 1 or a 0. Please note that in Figure

4.7 we are only labelling the weights that go from the input

to the first hidden layer. The other edgs in the architecture

carry their own weights too.

advanced data science and analytics with python 225

Figure 4.7: Backward propagation
of errors, or backpropagation,
enables the neural network to
learn from its mistakes.

226 j. rogel-salazar

We are now interested in checking if the prediction labels

obtained from the 0th forward pass are any good. We can

denote the output result as ŷ and compare it to the actual

target y. The result of the comparison between y and ŷ

contains useful information for the neural network as it The comparison between actual

and predicted values enables the

network to learn from its mistakes.
enables it to learn from its mistakes. In order to do this,

we make use of a loss (or cost) function, which enables

us to evaluate how well our chosen algorithm models the

training data provided. If our predictions are off the mark,

the loss function will return a higher value. However, if they

are good, the result of the loss function will be a smaller

number.

It is possible to propagate this information from the output

layer back to the hidden nodes, until it reaches the edges of

the input layer. In this way it is possible to enable the neural

network to identify the weights that need to be adjusted

to improve the predictions made. On the one hand, in the

cases where the prediction is different from the target label,

the neural network can adjust the weight that made this

prediction and improve the result. On the other hand, for

Please note that since the weights

are combined by the activation,

changes in one may require

further changes in others.

labels that have been correctly predicted, no adjustment

is needed. In order to propagate back the information, we

are in effect solving an optimisation problem for the loss

function chosen.

As mentioned above, a well-known algorithm such as

gradient descent can be used for the optimisation step, and

it requires us to be able to compute gradients. We will

provide further details about it in the next section. The

backpropagation step is depicted in Figure 4.7, panel b).

advanced data science and analytics with python 227

We are now in the situation shown in panel c) of Figure 4.7

where we reach the start of our learning loop. Now that we

have passed information back about the weights, the neural We start a new forward pass with

the new adjusted weights.network can make adjustments and the new weights let

us start a new forward pass. This step starts and follows

exactly the same logic as before, except that this time we

have new values w
[1]
0 , w

[1]
1 and w

[1]
2 . Notice that we are using

the superscript 1 to denote the fact that we have a new

iteration.

From here on, the process continues as before: We use

the weights and inputs to make calculations using the

activation function, and pass the results to the next layer.

When we reach the output layer, the new prediction results

are compared with the targets. The fact that we are using

a minimisation process indicates that we are expecting

lower and lower values from our loss function. We continue We iteratively adjust the weights

until we reach an optimal solution,

sending information forth and

back through the layers of the

network.. You are right, the phrase

goes “back and forth” but that

seems wrong for an ANN!

iterating over our neural network sending information

back and forth until we reach a chosen tolerance on the

values of our loss function. At that point, we can stop the

iterations and we have a neural network that has learnt from

its mistakes in making predictions when comparing to the

target labels provided. We are ready to unleash the model to

the world and confront real data. Let us now take a look at

implementing this workflow in more detail.

4.3 Neural Networks: From the Ground up

We have covered quite a few of the concepts behind

a neural network architecture and understand the main

228 j. rogel-salazar

ideas behind their “learning”. In this section we are going

to implement an artificial neural network with three layers:

The input and output layers and one hidden layer.

The goal is to see how the concepts described above

translate into code with Python. The code is not meant to be Take this implementation with a

“brain” of salt!the most efficient implementation ever and there may be

other ways to achieve the same results in a better way. Take

this implementation for what it is, and we will cover other

alternatives later on in this chapter.

Let us imagine that we are interested in discriminating

between two classes of animals, say cats and dogs. In

Chapter 5 of Data Science and Analytics with Python10, we 10 Rogel-Salazar, J. (2017). Data
Science and Analytics with Python.
Chapman & Hall/CRC Data
Mining and Knowledge Discovery
Series. CRC Press

encountered a friendly alien life-form that was tasked with

clustering animals on Earth based on similarities and

differences between them: Cats have pointy triangular ears,

whereas rabbits have long oval ones; horses have manes and

deer have antlers. This provided our alien friend with rules

that can be used in classification based on the labels we have

obtained for the animals shown to it. In this case we are It? him? her? them?

assuming that the labels have already been identified and

that we have a dataset containing animals with their

corresponding label: Cat or dog. The next task for the alien

is therefore to obtain a model that enables it to correctly

We should have asked for a name

and preferred pronoun! Ma-Sha

from Gazorpazorp? She may even

have a Marc Jacobs top by now!predict whether she has a cat or a dog in front of him, given

the different features provided to them.

From our previous discussion, we know that training an

artificial neural network involves choosing a number of

nodes in our hidden layer(s). It stands to reason that the

advanced data science and analytics with python 229

more nodes we include, the more complex our neural

network becomes, and the hope is that we will be able to fit Higher complexity may mean

higher computational cost.more complex functions with it. However, we need to take

into account the balancing between high dimensionality and

hence complexity, versus the computational cost incurred.

We did mention in Section 4.2.1 that choosing the right

number of hidden nodes is more data art than data science.

For our current purposes we are going to consider playing

with the number of hidden nodes in the architecture and see

how this affects our output.

4.3.1 Going Forwards

We start by making our way forwards from the input

layer and into the depth of our neural network architecture.

In practice, the way to achieve this is via the application

of matrix multiplication, and of course of the activation

function chosen for the task. Let us consider our input to We will use matrices to represent

our neural network model.be given by a 2-dimensional matrix X which will render

our prediction denoted by ŷ. We will denote the vector of

weights from the input layer to the first hidden layer as W1

and thus we can calculate the combination of the inputs

with the weights as:

This is the combined result of our

inputs.
z1 = XW1 + b1, (4.6)

please note that both W1 and b1 are parameters of our

network that need to be learnt from training data.

We can pass the result z1 to the activation function, and here

we will use the hyperbolic tangent for the hidden layer. This

230 j. rogel-salazar

means that the output will be given by:

This is the output of the hidden

layer.
a1 = tanh(z1). (4.7)

We are now able to take the output a1 of the hidden layer

and pass it as the input to the next layer in our network.

Remember that in this particular architecture this is actually

the output layer. In this case we have that the combination

of the input a1 and the weight vector W2 is given by:

Once more, we calculate the

combination of inputs.
z2 = a1W2 + b2. (4.8)

For the activation function in the output layer, we will use

the softmax function which will let us convert our scores to

probabilities:
And this is the output of the entire

network.
a2 = ŷ = σ(z2). (4.9)

Although we have written the expressions above specifically

for our three-layer neural network, it is easy to generalise With one hidden layer.

the equations noting that zi corresponds to the weighted

sum of inputs of layer i and thus ai is the output of the i-th

layer after applying the activation function chosen for that

layer. In effect we have a pipeline of matrices that transform

our data from one layer to the next, enabling along the way

some featuring engineering in an automatic way.

Let us stop for a moment to consider the dimensionality of

our matrices. For a 2-dimensional input X, with a single

hidden layer comprising n hidden nodes we have that our

parameters are W1 ∈ R
2×n, b1 ∈ R

n, W2 ∈ R
n×2, b2 ∈ R

2. Checking the dimensions of our

matrices is a good practice.We can see how the complexity becomes larger not only as

we increase the number of nodes in the layer, but also as

advanced data science and analytics with python 231

we increase the number of layers, and indeed the number

of nodes in them. Keeping track of all the transformations

that larger, deeper neural networks perform could become a

truly gargantuan task.

The calculations above can be generalised to a neural

network with L layers. We denote the activation of the

nodes in layer l as a column-vector al , the edges from the Let us generalise the ideas above

to L layers.nodes in layer l − 1 to layer l are stored in the weight matrix

Wl and the biases in the column vector bl . For the forward

pass, given the activation function fl , we have that:

al = fl

(

Wlal−1 + bl
)

. (4.10)

Note that we are taking into account the possibility that the

activation function on each layer may be different, perhaps

ReLU, softmax or even a hyperbolic tangent. The general
The activation function can be

different for each layer.

architecture of the network can be seen in Figure 4.8.

To calculate the input sums and move forward in the

network, let us consider three adjacent layers in the

architecture as shown in the middle part of Figure 4.8. Let

us index the nodes in the layers l − 1, l and l + 1 as m, p and

q, respectively. The input sum of a node p in layer l is:

This corresponds to the

generalised combination of

inputs.

zl
p = ∑

m

W l
mpal−1

m + bl
p, (4.11)

where we are adding the contributions of all nodes m in

layer l − 1. We can calculate the activations in layer l as

al
p = fl(z

l
p) and thus the input sum of a node q in layer l + 1

is:

zl+1
q = ∑

p

W l+1
qp al

p + bl+1
q . (4.12)

232 j. rogel-salazar

Figure 4.8: General architecture of
a neural network; we are showing
the labels of the different L layers
in the network.

In this way we have moved forwards in the network from

one layer to the next. We continue doing this until reaching

the output layer. So far so good, and now how do we learn

the parameters? Let us take a look.

4.3.2 Learning the Parameters

The task defined above requires us to determine the

paramaters (W1, b1, W2, b2) such that we get a minimum

error on our training data. The crucial part at this moment
We need to minimise a cost/loss

function.

is defining that error in terms of a suitable loss function. In

advanced data science and analytics with python 233

the high-level description in the Section 4.2.3 we mentioned

that a comparison between our prediction ŷ and the true

class labels of y would be ideal.

A suitable choice, with the softmax activation function we

have for our output layer, is the cross-entropy loss. Let

us consider that given a model for which c classes are The cross-entropy loss function

is a suitable choice for many

situations.
predicted, the hypothetical occurrence probabilities are

ŷ1, ŷ2, . . . , ŷc. If we observed k1 instances for the first class,

k2 for the second, and so on we have that the likelihood

is P(data|model) = Πcŷkc
c . For N = k1 + k2 + · · · + kc

observations we can write the following expression:

L(y, ŷ) = −
1
N

log Πcŷkn
c

= −
1
N ∑

i

ki log ŷi

= −∑
i

yi log ŷi (4.13)

where yi = ki/N correspond to the empirical probabilities.

For the case of two classes we have that the true observed Binary classification is a good

typical case.probabilities are such that y2 = 1 − y1 = 1 − y, and the same

applies to the predicted values. Therefore we can write

Equation (4.13) as:

L(y, ŷ) = −y log ŷ − (1 − y) log(1 − ŷ). (4.14)

In practice the loss function implemented in applications

including logistic regression is an average of all

cross-entropies. In the case where we have N data samples

234 j. rogel-salazar

the loss function is calculated as:
Remember that it is possible to

add a regularisation term to the

loss function.
L(y, ŷ) = −

1
N

N

∑
n=1

C

∑
i=1

y
(n)
i log ŷ

(n)
i . (4.15)

This expression lets us sum over each of our training data

points and whenever we predict the incorrect class, we

add to the loss. In other words, in cases where the two

probability distributions y and ŷ are far away, we have a

greater loss. Our goal is to find parameters that minimise

the loss, and thus maximise our predictions to match our

training dataset. Let us see how the minimisation can be

done.

4.3.3 Backpropagation and Gradient Descent

Now that we have a loss function, we need to use an

optimisation method to find its minimum. Gradient descent

algorithms find the optimal for a loss or cost function by Gradient descent is a popular

optimisation method.changing the parameters of a model such that the gradient

of the errors points down to a minimum error value.

We can make use of any optimisation technique we prefer

and there are many out there from which to choose, ranging

from brute force search all the way through to generic

algorithms. The important thing is to be able to change the In principle, any good

optimisation method can be

applied.
parameters of the neural network. However, as the

complexity of our network increases we must take into

account that the number of parameters to track becomes

larger and larger and we would like it to be as

computationally efficient as possible. Calculus is a good ally

to every savvy Jackalope data scientist.

advanced data science and analytics with python 235

Figure 4.9: The derivative of a
function f indicates the rate of
change at a given point. This
information lets us change our
parameters accordingly.

A useful and fundamental concept from calculus is that of

the derivative of a function. It basically provides a gauge to

the rate of change the function experiences at a given point.

In our case we can use this tool to check how much the

error in our predictions changes when we change one of the

parameters we would like to learn. Consider for instance

the 2-dimensional function f depicted in Figure 4.9, where a

clear minimum is shown.

If the function represents the cost, a positive value for its

derivative indicates that the error increases if we increase

236 j. rogel-salazar

the value of our parameter. If that is the case, we need

to reduce it and hence we move towards the function’s

minimum. If, however, the derivative is negative, the error Local minimum...

is decreasing, and therefore increasing the value of our

parameter gets us closer to the minimum. If the derivative

has a value of 0 we have reached a stable point, i.e., the

minimum, and we are done.

We can think of the description above as a skier who is

trying to reach the valley and stop for a well-deserved

refreshment. She would like to get to the lodge as swiftly

as possible and that means finding the slope with steepest Think of the algorithm in terms

of a skier that wants to reach the

lodge as swiftly as possible.
descent to reach her destination. If she chooses a path

where the slope is increasing, she should change direction.

That in a nutshell is what we are doing with the gradient

descent algorithm. The case shown in Figure 4.9 can be

described in terms of an ordinary derivative; however, when

we have multiple parameters we will require the use of

partial derivatives.

Now, for the backpropagation of the errors in our neural

network, we can apply the derivative trick and trace back

our steps in the network architecture. Our starting point

now is the output layer. We calculate the partial derivatives

of the loss function with respect to our parameters and

propagate the errors back to the input layer. The gradient

descent algorithm requires as input the gradients of the loss In other words, the vector of

derivatives.function:
∂L

∂W1
,

∂L

∂b1
,

∂L

∂W2
,

∂L

∂b2
.

advanced data science and analytics with python 237

Remember that our neural network carries out the following

computations:

We obtained these expressions in

Section 4.3.1.

z1 = XW1 + b1, (4.16)

a1 = tanh(z1), (4.17)

z2 = a1W2 + b2, (4.18)

a2 = σ(z2) = ŷ. (4.19)

We use this information to update our parameters, and we

do this with a particular learning rate, α, such that for a

parameter Wi the update is given by:

The learning rate, α, is a

hyperparameter of our model.

Wi := Wi − α
∂L

∂Wi
, (4.20)

and for bi we have:

bi := bi − α
∂L

∂bi
. (4.21)

We need to calculate each of the gradients and the

application of the chain rule makes this task easier. Let us

start with the derivative of the loss function with respect to

the parameter b2:
∂L

∂b2
=

∂L

∂z2

∂z2

∂b2
. (4.22)

We have that: The chain rule to the rescue!

∂z2

∂b2
=

∂(a1W2 + b2)

∂b2
= 1. (4.23)

238 j. rogel-salazar

For the partial derivative of the loss function with respect to

the variable z2 we have that:

We need to calculate the derivative

of the softmax function.

∂L

∂z2
= −y

∂ log σ(z2)

∂z2
− (1 − y)

∂ log(1 − σ(z2)))

∂z2
,

=
−y

σ(z2)

∂σ(z2)

∂z2
−

1 − y

1 − σ(z2)

∂(1 − σ(z2))

∂z2
, (4.24)

= −y(1 − σ(z2)) + (1 − y)σ(z2),

= σ(z2)− y = ŷ − y. (4.25)

Expression (4.24) requires us to compute the derivative of

the softmax function and more information can be found

in Appendix C. Furthermore, a general derivative of the

loss function with respect to parameter zj can be found in

Appendix D.

We have now all the information to calculate the derivative

of the loss function with respect to the parameter b2. Let us

take a look:

Once more we use the chain rule.∂L

∂b2
=

∂L

∂z2

∂z2

∂b2
= ŷ − y. (4.26)

The derivative of the loss function with respect to the

parameter W2 is given by:

And again...
∂L

∂W2
=

∂L

∂z2

∂z2

∂W2
= a1(ŷ − y). (4.27)

In a similar way, we can make use of the chain rule to

calculate the derivative of the loss function with respect to

advanced data science and analytics with python 239

b1 as follows:

We know the drill by now...
∂L

∂b1
=

∂L

∂z2

∂z2

∂a1

∂a1

∂z1

∂z1

∂b1
,

= (ŷ − y)W2(1 − tanh2(z1)). (4.28)

Following the same train of thought, finally the derivative of

the loss function with respect to W1 is:

Don’t we?
∂L

∂W1
=

∂L

∂z2

∂z2

∂a1

∂a1

∂z1

∂z1

∂W1
,

= (ŷ − y)W2(1 − tanh2(z1))X. (4.29)

Let us now go back to the generalisation introduced in

Section 4.3.1 and use the indexing shown in Figure 4.8.

Given a loss function L, we can calculate its derivative with

respect to a single weight in layer l:

We can now generalise our

calculations.

∂L

∂W l
mp

=
∂L

∂zl
p

∂zl
p

∂W l
mp

,

=
∂L

∂al
p

∂al
p

∂zl
p

∂zl
p

∂W l
mp

,

=

(

∑
q

∂L

∂zl+1
q

∂zl+1
q

∂al+1
p

)

∂al
p

∂zl
p

∂zl
p

∂W l
mp

,

=

(

∑
q

∂L

∂zl+1
q

W l+1
qp

)

f ′l (z
l
p)al−1

m . (4.30)

240 j. rogel-salazar

We are including a sum to account for all the contributions

from the nodes in layer l + 1. This is because their values Remember that we need to take

into account the contributions

from all input nodes.
have an effect on the overall error as they depend on the

weights with respect to which we are taking the derivative.

Furthermore, in the expression above we are fixing p and

m and as a result we can see what happens to the error

when changing one single weight. We can also look at how

the total error changes when the input sum to a node is

modified:

This is the total error change given

by the change in the input sum to

a node.
δl

p ≡
∂L

∂zl
p

=

(

∑
q

∂L

∂zl+1
q

W l+1
qp

)

f ′l (z
l
p), (4.31)

where we have used the result in expression (4.30). This

hints to a recursive formula such that:

We have obtained a recursive

function that can be applied to our

model.
δl

p =

(

∑
q

δl+1
q W l+1

qp

)

f ′l (z
l
p) (4.32)

As for the derivatives of the loss function with respect to the

biases we have:

Which turns out to be very handy!∂L

∂bl
p

=
∂L

∂zl
p

∂zl
p

∂bl
p

=
∂L

∂zl
p

(1) = δl
p. (4.33)

We can now use our recursive formula to obtain the error of

the nodes in the final layer L:

δL
m =

∂L

∂zL
m

=
∂L

∂aL
m

∂aL
m

∂zL
m

=
∂L

∂aL
m

f ′l (z
L
m). (4.34)

advanced data science and analytics with python 241

Using these recursion formulas, we can verify the

expressions we obtained before:

We obtained these expressions at

the beginning of this section.

δ(2) =
∂L

∂b2
=

∂L

∂a2

∂σ(z2)

∂z2
= ŷ − y (4.35)

δ(1) =
∂L

∂b1
= δ(2)W2

∂ tanh(z1)

∂z1

= δ(2)W2

(

1 − tanh2(z1)
)

(4.36)

∂L

∂W2
= δ(2)

∂z2

∂W2
= δ(2)a1 (4.37)

∂L

∂W1
= δ(1)

∂z1

∂W1
= δ(1)X (4.38)

Now that we have the equations that enable us to

backpropagate errors, we can consider some aspects of the

computational implementation of the optimisation

algorithm. There are different variations and one of the

most common is the so-called stochastic gradient descent In stochastic gradient descent,

we update the model for every

training data sample.
where the model is changed for each training example in

the dataset. In this case, the data effectively becomes

available to the algorithm in sequential order. This kind of

methodology is sometimes called online machine learning.

Although we may get a more immediate view of the

performance of the model, it is a computationally intensive

affair as well as being prone to be affected by noise.

A variation on this theme is the use of the so-called batch In batch gradient descent, the

model is updated after all the

training samples are considered.
gradient descent where the changes in the model are

calculated for each training sample, but crucially, the model

242 j. rogel-salazar

is updated once all the training samples have been

considered. A full loop through the complete training

dataset is called an epoch and we update the model at the An epoch is a full loop through

the complete training dataset.end of each epoch. The batch methodology makes our

computation more efficient compared to the stochastic

approach. It also provides us with a more stable error

estimation. However, we need to be mindful of potential

premature convergence given that stability. Similarly, large

training datasets may give us very slow execution times.

A variation on the batch methodology that splits the

training dataset into small batches can be used too. This is

called mini-batch gradient descent and serves as a balance In mini-batch gradient descent,

we split the training set in smaller

batches.
between the stochastic and batch methodologies described

above. Mini-batch lets us update the model with a higher

frequency than batch while being more efficient than the

stochastic approach. The batching of the training dataset

also makes it more manageable for large sets. The batch size The batch size describes the size of

the mini-batch!needs to be adjusted depending on our application.

Note that although our goal is to find the parameters of

the model, we need to be aware of any hyperparameters

for our model. In the case of mini-batch, not only do we

need to find a suitable number of epochs but also the batch

size. When the batch size is equal to the size of the training

dataset we recover the batch methodology, whereas when

the batch size is equal to a single data point we have the

stochastic one. Masters and Luschi11 advocate the use of 11 Masters, D. and C. Luschi
(2018). Revisiting Small Batch
Training for Deep Neural
Networks. Computing Research
Repository http://arxiv.org/abs/1804.07612

small batch sizes, between 2 and 32 for example. Some

popular batch sizes include values such as 32, 64 or 128.

http://arxiv.org/abs/1804.07612

advanced data science and analytics with python 243

As for the epochs, let us recall that they refer to the number

of iterations our algorithm runs through the entire training

dataset. Each epoch has therefore one or more batches. Remember that an epoch has one

or more batches.When the number of batches per epoch is equal to 1, we

have a batch gradient descent implementation! In cases

where we have 2 or more batches per epoch we effectively

have a couple of nested loops. One loop is over the number

of epochs, where the entire training dataset is utilised;

inside this loop we have another one that runs through

the number of batches specified. In general the number of

epochs can be typically on the order of hundreds so that Even thousands!

the algorithm has enough time to learn the parameters that

minimise the error.

What does this all mean in more concrete terms? Let us

assume that we have a dataset with 1000 data points and

we have chosen a batch size of 32 with 2000 epochs. We are

requiring our dataset to be divided into 31 batches of 32

samples and therefore we will update our model 31 times
Note that we are leaving 8

samples out... We can choose

a better batch size to use all our

data!
per epoch. With 2000 epochs we have 62, 000 batches to go

through while training our neural network.

4.3.4 Neural Network: A First Implementation

We have been thinking about ANNs and the way they

work, and you may be asking yourselves where the code is.

Without further ado, let us provide a first implementation.

Remember the caveat we clarified at the beginning of We did mention to take this

implementation with a “brain” of

salt!
Section 4.3: This may not be the best implementation, and

the aim is to demonstrate the concepts discussed above.

244 j. rogel-salazar

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x1

0.5

0.0

0.5

1.0

x 2

Figure 4.10: Observations
corresponding to two classes,
0 and 1, described by features x1
and x2. We will use this data to
train a neural network.

Let us consider the dataset shown in Figure 4.10. It contains

observations corresponding to two classes labelled 0 and 1

described by two features x1 and x2. The dataset called

neuralnet_dataset.csv12 can be obtained at 12 Rogel-Salazar, J. (2019b, Aug).
Neural Network - Observation
dataset. https://doi.org/10.6084/
m9.figshare.9249074.v1

https://doi.org/10.6084/m9.figshare.9249074.v1. We

can see that a linear classifier may be able to do an alright

job in separating the two classes, but it would be a hard task

to improve the discrimination given the semi-circular trends

shown in the plot. Similar datasets can be generated with

Scikit-learn with the help of the make_moons command. Let

us start by reading the data:

https://doi.org/10.6084/m9.figshare.9249074.v1
https://doi.org/10.6084/m9.figshare.9249074.v1
https://doi.org/10.6084/m9.figshare.9249074.v1

advanced data science and analytics with python 245

df = pd.read_csv(’neuralnet_dataset.csv’)

X = df[[’x1’, ’x2’]].values

y = df[’label’].values

Let us define a few parameters that will be used in

We are reading our data into a

Pandas dataframe.

determining the architecture of the neural network as

described in the previous sections. We need to keep

information about the number of samples in the training set

as well as the number of nodes in the input and output

layers. We are building a one-layer neural network, with its

corresponding input and output layers. For the input layer

we will have two nodes, one for each of the two features, x1

and x2 in our dataset. For the output layer we will also have

two nodes, one for each class to be predicted. We can then We could actually use one node in

the case of binary classification.see how this can be extended for multiclass problems. The

architecture is the one shown in Figure 4.1.

We have 2 nodes in the input and

output layers.

n_training = df.shape[0]

input_layer = 2

output_layer = 2

We also provide a value for the learning rate α, and should

we require a regularisation term in the cost function we also

need the value for the hyperparameter λ:

We define α and λ, our

hyperparameters.

alpha = 0.01

lambda_reg = 0.01

In order to keep track of the neural network parameters

Wi and bi, we will store and modify the values in a Python

246 j. rogel-salazar

dictionary. We will provide the number of nodes in each of

the layers to initialise the model. The number of nodes in

the hidden layer is one parameter we will need to decide We also need to decide the

number of nodes in the hidden

layer.
upon, and in this case we are going to show the effect of

the number of hidden nodes in the layer. Let us start with a

hidden layer comprising 3 nodes.

This functions initialises our

model.

def init_model(input_layer=2, output_layer=2,\

hidden_layer=3):

np.random.seed(42)

W1 = np.random.randn(input_layer,\

hidden_layer) / np.sqrt(input_layer)

b1 = np.zeros((1, hidden_layer))

W2 = np.random.randn(hidden_layer,\

output_layer) / np.sqrt(hidden_layer)

b2 = np.zeros((1, output_layer))

nn_params = {}

nn_params = {’W1’: W1, ’b1’: b1, ’W2’: W2,\

’b2’: b2}

return nn_params

Our model can be initialised as follows:

In this case we have a model with

3 nodes in the hidden layer.

nn_model = init_model(input_layer,\

output_layer, 3)

With the help of Equations (4.6)-(4.9), we can write a

function that implements the forward propagation step in

our neural network. For the hidden layer we are using a

advanced data science and analytics with python 247

hyperbolic tangent activation function. Since the output will

be given in terms of probabilities for each of the two classes,

we use the softmax activation function:

This function implements

the feedforward step in our

neural network. We are using

a hyperbolic tangent as the

activation function.

def forwardprop(nn_model, X):

W1, b1, W2, b2=nn_model[’W1’], nn_model[’b1’],\

nn_model[’W2’], nn_model[’b2’]

z1 = X.dot(W1) + b1

a1 = np.tanh(z1)

z2 = a1.dot(W2) + b2

e_scores = np.exp(z2)

prob = e_scores / np.sum(e_scores, axis=1,\

keepdims=True)

return prob

Once we have the forward propagation step, we need to

evaluate the loss incurred and therefore a function to this

end is required. We will implement the cross-entropy loss

function including a regularisation term as follows:

We evaluate the cross-entropy loss

function with this implementation.

def loss_eval(nn_model, X, y, lambda_reg):

W1, b1, W2, b2=nn_model[’W1’], nn_model[’b1’],\

nn_model[’W2’], nn_model[’b2’]

prob = forwardprop(nn_model, X)

logprobs = -np.log(prob[range(n_training), y])

data_loss = np.sum(logprobs)

data_loss+=lambda_reg/2 *\

(np.sum(np.square(W1))+\

np.sum(np.square(W2)))

return data_loss * (1./n_training)

248 j. rogel-salazar

Now that we have an evaluation of the loss, we can start the

backpropagation step with learning rate α. In this case we And now the backpropagation

step.are making use of our formulation from Equations (4.35)-

(4.38).

Remember that we are seeking to update the parameters of

the model and thus we return a dictionary with the required

information after the backpropagation step is completed.

This in turn can be used as the input for the next forward

propagation step:

Et voilà, the backpropagation

implementation.

def backprop(nn_model, X, y, prob, alpha=0.01):

W1, b1, W2, b2=nn_model[’W1’], nn_model[’b1’],\

nn_model[’W2’], nn_model[’b2’]

z1 = X.dot(W1) + b1

a1 = np.tanh(z1)

delta2 = prob

delta2[range(n_training), y] -= 1

dW2 = (a1.T).dot(delta2)

db2 = np.sum(delta2, axis=0, keepdims=True)

delta1 = delta2.dot(W2.T)*(1-np.power(a1, 2))

dW1 = np.dot(X.T, delta1)

db1 = np.sum(delta1, axis=0)

W1 += -alpha * dW1

b1 += -alpha * db1

W2 += -alpha * dW2

b2 += -alpha * db2

nn_model = {’W1’: W1, ’b1’: b1,\

’W2’: W2, ’b2’: b2}

return nn_model

advanced data science and analytics with python 249

In order to get a final prediction from the model, we

implement a function for this purpose:

We can obtain predictions with

this piece of code.

def predict(nn_model, x):

prob = forwardprop(nn_model, x)

return np.argmax(prob, axis=1)

Now that we have all the parts, we can build our neural

network and implement a batch gradient descent for a

chosen number of epochs:

We can now put it all together

in a batch gradient descent

implementation.

def neural_net(X, y, input_layer, output_layer,\

hidden_layer, alpha=0.01, lambda_reg=0.01,

epochs=30000, print_loss=False):

nn_model = init_model(input_layer,\

output_layer, hidden_layer)

for i in range(0, epochs):

prob = forwardprop(nn_model, X)

nn_model=backprop(nn_model, X, y,\

prob, alpha)

if print_loss and i % 1000==0:

print(’Epoch {0} loss: {1:.{2}f}’.\

format(i, loss_eval(nn_model,\

X, y, lambda_reg), 4))

return nn_model

250 j. rogel-salazar

2 1 0 1 2 3
x1

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 2

Figure 4.11: Classification
boundary obtained with a 3-
node hidden layer neural network.
The discrimination is modelled
well with a cubic-like function.

Let us train our neural network with a 3-node hidden layer:

A typical run of a neural net

training provides information

about the loss at the end of each

epoch.

nnet = neural_net(X, y, input_layer, output_layer,\

3, alpha, lambda_reg, print_loss=True)

Epoch 0 loss: 0.4451

Epoch 1000 loss: 0.0942

...

Epoch 28000 loss: 0.0921

Epoch 29000 loss: 0.0922

We can see the decision boundary obtained with this

architecture in Figure 4.11 where we can see how the

discrimination of the two classes is modelled with a

cubic-like function.

advanced data science and analytics with python 251

It is now easy to implement a loop so that we investigate

the effect that hidden layers of different sizes have in the

predictions we make. Let us consider hidden layers with

1, 2, 3, 10, 30 and 50 nodes. We know that the larger the Different hidden layer sizes

provide different boundaries.number of nodes in the hidden layer, the more complex

the network, and hence the more complex the classification

boundaries we can generate. This of course comes at the

cost of potential overfitting.

We will store the weights of each model in a dictionary

called nn_models so that we can retrieve the chosen model

with ease. Furthermore, we will make use of the time

library to get a measure of the execution time for each of the

architectures:

We can see the effect of various

layer sizes. In this case, a layer

with 1, 2, 3, 10, 30 and 50 nodes.

hidden_layers = [1, 2, 3, 10, 30, 50]

import time

nn_models = {}

for hidden_node in hidden_layers:

print(’{0}-node hidden layer’.\

format(hidden_node))

start = time.time()

nn_models[str(hidden_node)] = neural_net(X, y,\

input_layer, output_layer, hidden_node,

alpha, lambda_reg)

stop = time.time()

d = stop-start

print(’Execution time: {0:.{1}f} sec’.\

format(d, 2))

252 j. rogel-salazar

A typical run of the loop defined above would look similar

to the following output:

Note that the times may vary

from run to run and computer to

computer.

1-node hidden layer

Execution time: 8.97 sec

2-node hidden layer

Execution time: 8.83 sec

...

50-node hidden layer

Execution time: 49.03 sec

In Figure 4.12 we can see some classification boundaries

resulting from the code above. Notice that the neural

network with 1 hidden node is effectively a linear classifier, A hidden layer with 1 node is as

good as a linear classifier.not dissimilar to an implementation of logistic regression for

example. The classification boundary is a straight line, and

empirically we can see a number of misclassified data

points.

As we move to 2 nodes we start seeing the non-linearity

in the boundary. We had already seen the 3-node case in

Figure 4.11 and it is great to see the result in context. By the

time we reach 10 nodes, the boundary starts becoming more As we add more nodes, we get

more intricate boundaries and

separate our classes better. Beware

overfitting though!

intricate. In the cases with 30 and 50 nodes the boundaries

are increasingly curvier, trying to separate the two classes

more and more. We can see the balancing act we need to

perform between getting a good enough prediction and

avoiding memorising our training dataset.

advanced data science and analytics with python 253

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 2

1-node hidden layer 2-node hidden layer

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 2

3-node hidden layer 10-node hidden layer

2 1 0 1 2 3
x1

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 2

30-node hidden layer

2 1 0 1 2 3
x1

50-node hidden layer

Figure 4.12: Classification
boundaries for a neural network
with one hidden layer comprising
1, 2, 3, 10, 30 and 50 hidden nodes.

254 j. rogel-salazar

4.4 Neural Networks and Deep Learning

We have successfully built our first neural network

from scratch, deserving a celebration worth remembering. Who’s for fruit cake? Maybe

two dozens fruit cakes, a dozen

macaroons and some nice vanilla

sponge would do for celebrations.

Not only have we covered a lot of the foundational concepts

in neural networks, but also paved the road to addressing

useful extensions to those ideas. A case in point is the

recent explosion in the use of deep learning for a variety

of applications, from automatic machine translation, to

computer vision and even medical diagnosis.

In Section 4.2.1 we first introduced the term deep learning

in the context of explaining the layers and nodes inside a

neural network. As we add more and more hidden layers Deep learning refers to the use or

large multi-layer networks.to our network, with a larger and larger number of nodes

we require for our inputs to flow deeper and deeper into

the architecture we built. In that sense, we are moving from

having 1, 2 or 3 hidden layers to having hundreds of them.

A complex architecture like that is suitable to be used when

having large sets of labelled data, with rich features and

patterns to be learnt by the deep neural network.

Given their usefulness, deep neural networks have gathered

a lot of attention and constructing them in the way we did

for our humble 1-layer network in the previous section is no We need a better framework to

build large networks.longer feasible. Instead, there are a number of frameworks

and libraries that make this task much easier and more

understandable, as well as enabling us to make use of better

implementations and the best in class in terms of hardware,

such as graphics processing units (GPUs).

advanced data science and analytics with python 255

Some of the most notable frameworks include Google’s own

TensorFlow13 with low level implementations for deep 13 Abadi, M. et al. (2015).
TensorFlow: Large-scale machine
learning on heterogeneous
systems. http://tensorflow.org/.
Software available from
tensorflow.org

learning and a low level API. Similarly, one can think of

implementing things in Caffe14 developed by the Berkley

14 Jia, Y. et al. (2014). Caffe:
Convolutional Architecture for
Fast Feature Embedding. arXiv
preprint arXiv:1408.5093

Vision and Learning Center with a focus on speed.

Although neither TensorFlow nor Caffe is a Python library

per se, they do offer bindings into Python making things

more approachable for us. Other options include Theano15 15 Al-Rfou, R. et al. (2016,
May). Theano: A Python
framework for fast computation of
mathematical expressions. arXiv
e-prints abs/1605.02688

which can be compared to what scipy has done for scientific

Python. We also have libraries such as Apache MXNet16,
16 Chen, T. et al. (2014). CMXNet:
A Flexible and Efficient
Machine Learning Library for
Heterogeneous Distributed
Systems. arXiv preprint
arXiv:1512.01274

Microsoft Cognitive Toolkit (CNTK)17 and Facebook’s

17 Github (2018). CNTK:
The microsoft cognitive tool.
https://github.com/Microsoft/CNTK/.
Accessed: 2018-08-13

PyTorch18.

18 Paszke, A. et al. (2017).
Automatic differentiation in
PyTorch. In NIPS Autodiff Workshop

As you can see, the ecosystem is a vast one and there are

many more tools out there than we could be able to cover in

this book. All in all, we are interested in a framework that

enables us to use some of the most up-to-date techniques

in the deep learning arena, while keeping a high level

language interface. This will enable Jackalope data scientists

like us to abstract some of the low level implementations

and use modular libraries to carry out deep learning tasks.

For these reasons, we are going to cover the use or Keras in

this book.

Keras19 offers a high-level API written in Python supporting 19 Chollet, F. et al. (2015). Keras.
https://github.com/fchollet/

kerasbackends such as TensorFlow, CNTK and Theano. Keras

enables experimentation and rapid prototyping, while

keeping with the Pythonic philosophy of readability and

user friendliness. It started life as part of the ONEIROS

research effort. The name is the Greek word for “horn”
ONEIROS stands for Open-ended

Neuro-Electronic Intelligent Robot

Operating System.(κὲρας) in reference to the Hellenic literary image of the

http://tensorflow.org
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/Microsoft/CNTK
http://tensorflow.org

256 j. rogel-salazar

gates of horn and ivory that distinguish between true (horn)

and false (ivory) visions or dreams. Homer makes reference

to these gates in the Odyssey20, when Penelope herself is 20 Fagles, R. (1997). The Odyssey. A
Penguin Book. Penguin Books

trying to decide whether her dream about her husband’s

return to Ithaca is but a false vision.

In any event, Keras is a modular library that enables us to

put together deep neural networks using a high-level syntax

making it ideal for our purposes. In this particular case we

are going to make reference to the TensorFlow backend, but

other options are possible as we mentioned above. Keras Here, we will use a TensorFlow

backend.lets the user build sequential networks, i.e., where the

flow of information moves forward in a linear way as we

have described in the previous sections. Similarly, it also

lets us construct graph-based networks with the help of a

functional API. With it we can let inputs “jump” to specific

layers and obtain more complex network architectures as a

result.

For us to be able to use Keras with TensorFlow, we will

need to make appropriate installations in our machines. Please make sure you check the

documentation for your own

system requirements.
We are assuming that we are working with Anaconda and

creating a conda environment is probably the best option.

You can try something like this:

> conda create -n tfenv pandas scikit-learn

jupyter matplotlib

Remember to activate your environment (in this case called

tfenv) every time you need to use Keras:

advanced data science and analytics with python 257

> conda activate tfenv

(tfenv)

> pip install tensorflow

> pip install keras

You can also consider installing other libraries to make your

We are assuming the use of conda.

Other virtual environments can

also be used.

workflow better for you. Let us recreate with Keras the

neural network architecture we built in Section 4.3.4. We

will use the sequential API to create a layer-by-layer model

and as usual we will import some useful libraries first:

We will be using the sequential

API.

import pandas as pd

import tensorflow as tf

import keras

from keras.utils import np_utils

from keras.model import Sequential

We know why we require the first three import statements;

as for the fourth one, we will use this to wrangle our data

so that we can make appropriate type transformations to be

used with Keras. The last import statement enables us to

use the sequential API in Keras.

We instantiate a sequential model as follows:

We need to instantiate our model.model = keras.Sequential()

Now that we have an instance of our model, we can proceed

to the creation of each of the layers in our network. Keras

offers different types of layers and one of the most common

258 j. rogel-salazar

is the dense layer. It is a layer where all the nodes have

edges to the previous layer. We need to provide the number A dense layer is a fully connected

layer.of units (i.e., nodes) that this layer must have. Since this is

our first hidden layer, we pass an argument to tell it how

many nodes are in the input layer. We can do this with a

shape tuple called input_shape, or for layers such as dense

ones we can use a parameter called input_dim. We also

need to specify the activation function that will be used at

this point of the neural network architecture. This is how we

do this:

Our hidden layer.

hnodes = 3

hidden_layer = keras.layers.Dense(hnodes,

input_dim=2, activation=’tanh’)

In this case we are creating a hidden layer with 3 hidden

nodes, the input layer has 2 entries and the activation

function is the hyperbolic tangent. We can see how easy it

would be to change the number of hidden nodes in this case.

Notice that we did not have to declare explicitly the This is only possible for Sequential

models.existence of an input layer. We simply provide information

about its shape or dimensions.

The next layer in our architecture is the output layer, so let

us declare it in Keras:

And our output layer.

output_layer = keras.layers.Dense(2,

activation=’softmax’)

In this case we have an output layer with two nodes and

the activation function applied is a softmax function. Notice

that we do not have to declare explicitly the shape of the

advanced data science and analytics with python 259

input received by this layer. It is implied by the sequencing

of layers once we “stitch” them together. Let us do that:

model.add(hidden_layer)

model.add(output_layer)

We simply use the add method of the sequential model to

Remember that the order in which

you add the layers is important.

add the layers in the order they go in the architecture.

We need to decide on the optimisation algorithm that we are

going to use in our neural network. Keras offers a variety of

them including stochastic gradient descent (SGD), Adagrad,

RMSprop or Adaptive Moment Estimation (Adam)21 . In 21 Kingma, D. P. and J. Ba (2014).
Adam: A method for stochastic
optimization. arxXiv:1412.6980.
Comment: Published as a
conference paper at the 3rd
International Conference for
Learning Representations, San
Diego, 2015

this case we will use SGD:

sgd = keras.optimizers.SGD(lr=0.01,

decay=1e-6, momentum=0.9,

nesterov=True)

where lr is the learning rate, decay applies a decay to the

learning rate over each update:
The learning rate related to

the decay and the number of

iterations.
lr := lr

(

1
1 + decay ∗ iterations

)

; (4.39)

momentum is a parameter that encourages the algorithm

to move in the direction of descent and is related to the

velocity of descent:

The momentum is related to the

velocity of descent.
v := momentum ∗ m− lr ∗ g, (4.40)

where m is the previous weight update and g is the current

gradient with respect to parameter p. We can use this

260 j. rogel-salazar

velocity to calculate the new value of p:

pnew =







p+ v, if nesterov == False,

p+ momentum ∗ v− lr ∗ g otherwise.
(4.41)

If you are interested in reading more about Nesterov

momentum, take a look at the paper by Sutskever et al.22 22 Sutskever, I., J. Martens, G. Dahl,
and G. Hinton (2013, 17–19

Jun). On the importance of
initialization and momentum in
deep learning. In S. Dasgupta and
D. McAllester (Eds.), Proceedings
of the 30th International Conference
on Machine Learning, Volume 28

of Proceedings of Machine Learning
Research, Atlanta, Georgia, USA,
pp. 1139–1147. PMLR

where a good description of initialisation and momentum is

presented.

We now need to compile our model, this step configures the

learning process for our neural network architecture. We

need to provide three arguments to the compile method:

The optimisation algorithm to be used, the loss function to

be optimised and a list of metrics:

model.compile(optimizer=sgd,

loss=’categorical_crossentropy’,

metrics=[’accuracy’])

In this case we are using the stochastic gradient descent We compile our model to use

stochastic gradient descent.algorithm we instantiated above; the loss function is for

categorical cross-entropy as we are trying to distinguish

between two classes.

We are finally in a position to start the learning process with

the aid of the fit method, but before we do that let us make

a couple of manipulations to the input data. Remember that

we read our data from a Pandas dataframe as follows:

We use Pandas to read our data.

Other methods can also be used.

df = pd.read_csv(’neuralnet_dataset.csv’)

X = df[[’x1’, ’x2’]].values

y = df[’label’].values

advanced data science and analytics with python 261

2 1 0 1 2 3
x1

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 2
Keras 1-hidden Layer Neural Network

Figure 4.13: Classification
boundary obtained with a
sequential model for a neural
network implemented in Keras.

We will convert the labels in the y vector into a binary class

matrix to be used with the categorical cross-entropy cost

function:

We convert the target labels into

categorical variables.
y = np_utils.to_categorical(y)

and now we fit our model:

And finally, we train our model.
model.fit(X, y, batch_size=100, epochs=5000,

verbose=0)

Notice that we can change the batch size and the number

of epochs directly in the fit method. You can see how

the learning progresses with verbose=1. The result of our

learning process can be seen in Figure 4.13.

262 j. rogel-salazar

We can look at a summary of the architecture we just

created as follows:

We can see the layers created and

the number of parameters to learn.

> model.summary()

Layer (type) Output Shape Param #

===

dense_1 (Dense) (None, 3) 9

dense_2 (Dense) (None, 2) 8

===

Total params: 17

Trainable params: 17

Non-trainable params: 0

As we can see, there are 2 dense layers, one with 3 nodes

and one with 2. There are thus 17 parameters that need to

be fitted in this model and we can see the weights obtained

with the get_weights method:

The weights are readily available

to us. Beware their numbers for

deep networks.

> model.get_weights()

[array([[2.1810133 , -2.1321995 , -2.4240587],

[-0.41597274, -1.8568848 , 1.0889707]],

dtype=float32),

array([1.0000919, 1.4230473, 3.3605928],

dtype=float32),

array([[-3.8464072, 3.5489938],

[-3.4979208, 3.7599623],

[4.5513706, -4.011438]], dtype=float32),

array([-0.8270238 , 0.82702374], dtype=float32)]

advanced data science and analytics with python 263

Please note that the weights you obtain in your machine

may vary from the ones shown above, after all we are

relying on different starting points. Finally, remember that

you should apply best practices in your work by splitting Remember to apply best practices,

and split your data into training

and testing datasets.
your data into training and testing. You can also apply

cross-validation while finding the best hyperparameters for

your model.

We can see how the use of a high-level framework like Keras

enables us to implement neural network architectures in an

easy and friendly way. This opens up the opportunities to

build more complex networks such as convolutional and

recurrent neural networks. Let us take a look.

4.4.1 Convolutional Neural Networks

A convolutional neural network is a type of

CNN for short. Not to be confused

with a certain news organisation!

artificial neutral network that relies on convolution to learn

patterns in the training data provided. The architecture with

input, hidden and output layers is the same as we have

discussed above. The main difference is the fact that the

hidden layers use more than a simple activation function;

they also convolve their input with a filter or kernel.

Convolutional neural networks (CNNs) have been gaining

traction in applications such as image processing and

computer vision for example.

Many image editing tools make use of convolution to apply

different filters to a picture. Different kernels result in
An identity kernel is given by

I =









0 0 0

0 1 0

0 0 0









.
blurring, sharpening or detecting edges in the image. For

example an identity kernel can help scale a picture down,

264 j. rogel-salazar

Figure 4.14: An image of a letter
J (on the left). After applying
an identity kernel the result is a
scaled down version of the image
(on the right).

while sharper images can result from the application of a

sharpening kernel such as:

Fs =









0 −1 0

−1 5 −1

0 −1 0









. (4.42)

Consider the image of a (pixelated) letter J as shown on

the left-hand side of Figure 4.14. The application of an

identity kernel to this image results in a smaller one. The Convolution requires element-wise

multiplication of image portions

of the same size as the kernel

applied.

convolution of the original picture with the kernel chosen

requires the element-wise multiplication of a portion of

the image of equal size as the kernel. We then add up all

the product outputs as the result, which we show on the

right-hand side of Figure 4.14.

advanced data science and analytics with python 265

The application of the filter is done as if we were scanning

the original image, moving the filter by a stride S. Think

of the filter as a torch that is used to illuminate portions of

the image as we move across it, letting us concentrate on Think of the convolution operation

as a torch that scans the image to

highlight details.
the details highlighted by the torch’s light. In our example

above, for a stride S = 1 we have that we go from an image

of 11 × 8 to a scaled image of 9 × 6. If you want to avoid

the scaling down, you can apply padding to the image with

zeros. You can determine the size of the final figure with the

following formula:

output_side = 1 +
1
S
(input_side + kernel_side+

2(padding)) . (4.43)

Figure 4.15: An image of a
Jackalope icon (on the left). After
applying a sharpening filter, we
obtain the image on the right.

Let us take a look at a more realistic image manipulation. In

Figure 4.15 we can see the result of applying the sharpening

filter of Equation (4.42) to the image of a Jackalope icon.

266 j. rogel-salazar

Let us take a look at what is happening with a portion of

the image. Here are is a 5 × 5 patch of the image:

We have chosen a portion

containing an edge, 0 being

blank and 1 black pixels.
P =





















0 1 1 1 1

0 0 1 1 1

0 0 1 1 1

0 0 1 1 1

0 0 1 1 1





















. (4.44)

The convolution of patch P with the filter Fs is given by:

This is the result of convolving

a 3 × 3 filter with a 5 × 5 image

portion.
P ⊛ FS =









−2 2 1

−1 2 1

−1 2 1









, (4.45)

where ⊛ denotes the convolution operation, and the first

element of the result is given by (0)(0) + (1)(−1) + (1)(0)+

(0)(−1) + (0)(5) + (1)(−1) + (0)(0) + (0)(−1) + (1)(0) =

−2.

The same sort of calculation is done for each of the entries

in the given patch. For a color image, we have red, blue, The same operation will have to be

applied to each layer of the image.green and transparency channels and the convolution

has to be done for each layer. The output channel of the

convolution is called a feature map and it encodes the

degree of presence of the feature detected.

Once the convolution is completed, it is possible to apply an

operation to further reduce the size of the image and make

the whole process more manageable. One such operation is

advanced data science and analytics with python 267

pooling: Given an n × n pooling window, we keep only the

Pooling is a down-sampling

process that reduces the size of

our matrices.

maximum value in the window. This is called max-pooling.

Another option could be to obtain the average and this is

called average-pooling. In the example above, max-pooling on

a 2 × 2 window will result in:

max_pooling(P ⊛ FS) =





2 2

2 2



 . (4.46)

The operations outlined above will need us to sweep the

entire image with our filter. The result is a filtered image Remember the analogy of using a

torch.with the resolution given by the formula shown in Equation

(4.43).

So far so good, but... what is the relationship with neural

networks. Well, if we use various filters that detect different

features such as vertical and horizontal edges, curved

features, etc. we can use the results to determine, for

example, the presence of objects. In practice a CNN learns

This is useful in computer vision

problems.

these feature maps as the training process is executed. A

typical architecture for a CNN is shown in Figure 4.16.

The setup involves the use of one or more convolutional

layers with pooling and a ReLU activation, followed by Or other activation functions.

a flattening layer. Flattening enables us to convert our

2D matrices into a column vector ready to be used in a

dense layer. Sometimes it is useful to drop a random set of

activations forcing the network to generalise better. These

layers are referred to as dropout layers.

268 j. rogel-salazar

Figure 4.16: Architecture of a
convolutional neural network.

4.4.2 Convolutional Neural Networks in Action

Let us create a neural network classifier for images

based on the CIFAR-10 dataset23. The dataset contains 23 Krizhevsky, A. (2009). Learning
multiple layers of features from
tiny images. Technical report60, 000 images with 32 × 32 resolution. They are divided

into 10 balanced classes. The dataset is split into 50, 000

training images and 10, 000 testing ones. The ten classes in

the dataset are: Airplane, automobile, bird, cat, deer, dog,

frog, horse, ship and truck. An example for each of the

classes is shown in Figure 4.17. Let us define a list with the

classes:

We will use this list to make

human-readable predictions later

on.

class_names = [’airplane’,’automobile’,’bird’,

’cat’,’deer’,’dog’, ’frog’,’horse’,’ship’,

’truck’]

advanced data science and analytics with python 269

Figure 4.17: Example images
for each of the ten classes in the
CIFAR-10 dataset. The pixelation
is the result of the images being
32 × 32.

The dataset is included with Keras and can be imported as

follows:

from keras.datasets import cifar10

(X_tr, y_tr), (X_tst, y_tst) = cifar10.load_data()

The images are now given by integer numpy arrays. In Please note that the data will need

to be downloaded the first time

you use the dataset. This may take

some time.

order to ensure their correct manipulation, we will

normalise our data. First we will cast the arrays as float.

X_train = X_tr.astype(’float32’)

X_test = X_tst.astype(’float32’)

We will then calculate a mean and standard deviation and

apply it to the data:

270 j. rogel-salazar

mean = np.mean(X_train,axis=(0,1,2,3))

std = np.std(X_train,axis=(0,1,2,3))

X_train = (X_train-mean)/(std+1e-7)

X_test = (X_test-mean)/(std+1e-7)

We obtain the mean and standard

deviation to normalise our data.

In order to use categorical cross-entropy as our loss function,

we will use one-hot encoding to get suitable classes for our

task. We will have to specify the number of classes in our

dataset so that we have the appropriate number of nodes in

the output layer:

In this way we ensure the labels

are categorical variables.

from keras.utils import np_utils

y_train = np_utils.to_categorical(y_tr)

y_test = np_utils.to_categorical(y_tst)

num_classes = y_train.shape[1]

We are going to build our convolutional neural network

using the Keras functional API. Let us import some useful

libraries first:

We import a number of useful

libraries from Keras.

import numpy as np

import keras

from keras.models import Model

from keras.layers import Dense, Activation,\

Flatten, Dropout, BatchNormalization, Input

from keras.layers import Conv2D, MaxPooling2D

from keras import regularizers

from keras.callbacks import LearningRateScheduler

from keras.preprocessing.image import\

ImageDataGenerator

advanced data science and analytics with python 271

We can see some familiar words such as Dense and Flatten.

As for others, they tend to do what they describe:

Convolutional layers can be defined with Conv2D and Conv2D implements a

convolutional layer.max-pooling can be achieved with MaxPooling2D. For others

we will provide explanations as we use them.

When using the functional API, we must define an input

layer explicitly with a shape argument determining the

dimensionality of the training data. In this case we have

images of size 32 × 32 × 3.

Remember that we have 3

channels in the images.

model_input = Input(shape=(32, 32, 3))

The layers are connected pairwise and the connection

specifies the source of the input as given by the arrangement

in our architecture. We explicitly name the inputting layer in We explicitly name the inputting

layer in parenthesis.parentheses after the desired connecting layer. It is easier

when we see it; let us create a first convolutional layer

taking input from model_input defined above:

weight_decay=1e-4

conv1 = Conv2D(32, kernel_size=(3, 3),\

activation=’relu’, padding=’same’,\

kernel_regularizer=\

regularizers.l2(weight_decay))(model_input)

Our convolutional layer takes first the number of filters

to be learnt. This represents the dimensionality of the

output space for the layer. In this case we request 32 filters.

kernel_size specifies the window size for the convolution.
The kernel_size is a tuple

defining height and width of

the window.
The activation function applied to the layer is specified with

activation and in this case we are using a ReLU function.

272 j. rogel-salazar

It is possible to apply padding; here we request for the

output to be the same size as the input. We also apply a Other padding options include

valid and casual.penalty to the parameters of this layer, in this case an L2

penalty with a weight decay of 1 × 10−4. Finally, we can

see that model_input is the input for this convolutional

layer. The next step in our architecture is the application

of a normalisation24 transformation maintaining the mean 24 Ioffe, S. and C. Szegedy (2015).
Batch normalization: Accelerating
deep network training by
reducing internal covariate shift.
CoRR abs/1502.03167

activation close to 0 and its standard deviation near 1.

batchn1 = BatchNormalization()(conv1)

We apply another combination of a convolution layer and

batch normalisation:

We can easily add more layers to

our architecture.

conv2 = Conv2D(32, (3, 3), activation=’relu’,\

padding=’same’, kernel_regularizer\

= regularizers.l2(weight_decay))(batchn1)

batchn2 = BatchNormalization()(conv2)

Our next layer is a pooling layer. MaxPooling2D takes an

argument defining the pooling window size:

pool1 = MaxPooling2D(pool_size=(2,2))(batchn2)

As we can see, the input for this layer is given by the

batchn2 layer. In order to help with generalisation, we will

now set a random fraction of the input units to 0:

In this case we drop out 20%.

drop1 = Dropout(0.2)(pool1)

We are getting the hang of this. We will add a few more

convolution layers together with batch normalisation,

advanced data science and analytics with python 273

pooling and dropout. Here, we will be requesting 64 filters

in each of the next two convolution layers, followed by two

more with 128 filters, with dropouts of 30% and 40%,

respectively:

We are adding layer upon layer

to our convolutional neural

network: Convolutional, batch

normalisation and pooling, one

after the next.

conv3 = Conv2D(64, (3, 3), activation=’relu’,\

padding=’same’, kernel_regularizer\

=regularizers.l2(weight_decay))(drop1)

batchn3 = BatchNormalization()(conv3)

conv4 = Conv2D(64, (3, 3), activation=’relu’,\

padding=’same’, kernel_regularizer=\

regularizers.l2(weight_decay))(batchn3)

batchn4 = BatchNormalization()(conv4)

pool2 = MaxPooling2D(pool_size=(2,2))(batchn4)

drop2 = Dropout(0.3)(pool2)

conv5 = Conv2D(128, (3, 3), activation=’relu’,\

padding=’same’, kernel_regularizer=\

regularizers.l2(weight_decay))(drop2)

batchn5 = BatchNormalization()(conv5)

conv6 = Conv2D(128, (3, 3), activation=’relu’,\

padding=’same’, kernel_regularizer=\

regularizers.l2(weight_decay))(batchn5)

batchn6 = BatchNormalization()(conv6)

pool3 = MaxPooling2D(pool_size=(2,2))(batchn6)

drop3 = Dropout(0.4)(pool3)

We can add as many convolutional layers as we desire, and

remember that as you add more, the number of parameters

to be fitted grows too. Let us flatten the input up until now,

and add a dense layer.

274 j. rogel-salazar

flat = Flatten()(drop3)

dense1 = Dense(num_classes,\

activation=’softmax’)(flat)

Note that the output layer has num_classes=10 nodes, one

Finally, we connect to a dense

output layer.

for each class in our training data and the activation

function is a softmax function. We can see the final version

of our architecture with the summary:

We can see the different layers

in our CNN, and the number of

parameters to learn.

> model.summary()

Layer (type) Output Shape Param #

===

input_1 (InputLayer) (None, 32, 32, 3) 0

conv2d_1 (Conv2D) (None, 32, 32, 32) 896

batch_normalization_1 (None, 32, 32, 32) 128

conv2d_2 (Conv2D) (None, 32, 32, 32) 9248

batch_normalization_2 (None, 32, 32, 32) 128

max_pooling2d_1 (Max (None, 16, 16, 32) 0

dropout_1 (Dropout) (None, 16, 16, 32) 0

conv2d_3 (Conv2D) (None, 16, 16, 64) 18496

batch_normalization_3 (None, 16, 16, 64) 256

conv2d_4 (Conv2D) (None, 16, 16, 64) 36928

batch_normalization_4 (None, 16, 16, 64) 256

max_pooling2d_2 (MaxP (None, 8, 8, 64) 0

dropout_2 (Dropout) (None, 8, 8, 64) 0

conv2d_5 (Conv2D) (None, 8, 8, 128) 73856

batch_normalization_5 (None, 8, 8, 128) 512

conv2d_6 (Conv2D) (None, 8, 8, 128) 147584

batch_normalization_6 (None, 8, 8, 128) 512

advanced data science and analytics with python 275

max_pooling2d_3 (MaxP (None, 4, 4, 128) 0

dropout_3 (Dropout) (None, 4, 4, 128) 0

flatten_1 (Flatten) (None, 2048) 0

dense_1 (Dense) (None, 10) 20490

===

Total params: 309,290

Trainable params: 308,394

Non-trainable params: 896

This model has a total of 309, 290 parameters, of which we

In this case we have 308, 394

parameters to train.

need to train 308, 394. Let us now compile our model. We

define a batch size of 64 and use an RMS optimiser:

Do not forget to compile the

model before training.

batch_size = 64

opt_rms = keras.optimizers.rmsprop(lr=0.001,\

decay=1e-6)

model.compile(loss=’categorical_crossentropy’,\

optimizer=opt_rms, metrics=[’accuracy’])

We can define a schedule for the learning rate: As the

number of epochs increases, our learning rate gets smaller.

As training goes on, we make our

learning rate smaller.

def lr_shedule(epoch):

if epoch>100:

lrate = 0.0003

elif 75 < epoch <= 100:

lrate = 0.0005

else:

lrate = 0.001

return lrate

276 j. rogel-salazar

We will also use Keras to augment our data by making

transformations to the inputs, we will use the

ImageDataGenerator function to create modifications

enabling for rotation of the image, height and width shifts

and even horizontal flips:

datagen = ImageDataGenerator(

rotation_range=15, width_shift_range=0.1,

height_shift_range=0.1, horizontal_flip=True)

datagen.fit(X_train)

With ImageDataGenerator we can

augment our images by applying

transformations.

We are ready to fit our model: Keras enables us to fit the

model on batches with real-time data augmentation through

the fit_generator method for the model, and the flow

method for the data augmentation.

Please note that this step may take

several hours, depending on the

computer architecture you use.

model.fit_generator(datagen.flow(X_train, y_train,

batch_size=batch_size), steps_per_epoch=\

X_train.shape[0]//batch_size, epochs=125,

verbose=1, validation_data=(X_test, y_test),

callbacks=[LearningRateScheduler(lr_schedule)])

We can evaluate the model on the test data as follows:

Evaluating our model is very easy.

> scores = model.evaluate(X_test, y_test,\

batch_size=128, verbose=1)

> print(’Evaluation result: {0:.2f}, Loss:\

{1:.2f}’.format(scores[1]*100, scores[0]))

Evaluation result: 88.45, Loss: 0.47

advanced data science and analytics with python 277

Let us pick 10 images at random to create predictions for

them.

Using the good old random

package.

import random

ixs = []

for i in range(10):

ix = random.randint(0, X_test.shape[0])

ixs.append(ix)

sub_X_test[i] = X_test[ix]

First let us look at the indices of the pictures:

In case you want to check the

labels predicted...

> print(ixs)

[8804, 4028, 7066, 5241, 1648,

8330, 1202, 2210, 2055, 2153]

For the pictures chosen randomly, the prediction can be

calculated as:

> mypred = np.argmax(model.predict(sub_X_test), 1)

> print([class_names[x] for x in mypred])

[’frog’, ’airplane’, ’frog’, ’deer’,

’ship’, ’dog’, ’bird’, ’bird’, ’dog’, ’ship’]

The actual labels can be retrieved as follows:

We are able to compare the labels

predicted with the actual ones.

You may want to use something

like a confusion matrix instead.

> print([class_names[y_tst[i][0]] for i in ixs])

[’frog’, ’airplane’, ’frog’, ’deer’,

’ship’, ’dog’, ’bird’, ’bird’, ’dog’, ’ship’]

278 j. rogel-salazar

Finally, let us make a prediction with a totally new image.

You can also make predictions for

images not in the dataset!

Let us try the picture shown in Figure 4.18 saved into a file

called picbo001.jpg. First we will need to read the image

and ensure that it has the right dimensions:

import matplotlib.image as mpimg

from skimage.transform import resize

img=mpimg.imread(’picbo001.jpg’)

img_resized = resize(img, (32, 32),\

anti_aliasing=True)

Figure 4.18: A picture of a
nice feline friend to test our
convolutional neural network.

In this case, the resized image has values between 0 and 1.

We will therefore multiply the image by 255 to apply the

normalisation used for the training images:

advanced data science and analytics with python 279

img_resized = (img_resized*255-mean)/(std+1e-7)

proc_img = img_resized.reshape((1,) +\

img_resized.shape)

The last step is needed so that the image has dimensions

(1, 32, 32, 3) as expected by the model. Finally we can make

our prediction: Indeed, the convolutional neural

network can see our feline friend

and tell us about it!
> pr = model.predict(proc_img)

> pr_label = np.argmax(pr, axis=1)[0]

> print(’The image has a {0}’.format(\

class_names[pr_label]))

The image has a cat

Et voilà, we have an image classifier from a convolutional

neural network ready to be used.

4.4.3 Recurrent Neural Networks

Memory is an important function that our brains

enable us to perform. We are not pretending to explain here

what memory is or is not, or even what it is for. I

recommend reading A. Glenberg’s paper on the subject

instead25. If we think of memory as the function to encode, 25 Glenberg, A.M. (1997). What
memory is for. Behav. Brain Sci. 20,
1–55store and subsequently retrieve information, we would

expect that, given the inspiration, an artificial neural

network may be able to support a similar ability. So far, that

has not been the case. The neural networks we have

discussed pass information forwards and backwards but at

280 j. rogel-salazar

no point we have mentioned anything about retaining any

memories. Carrying memories forwards is a helpful thing,

as the Queen of Hearts26 would remark , “It’s a poor sort of 26 Carroll, L. and J. Tenniel (1897).
Through the Looking Glass: And
what Alice Found There. Altemus’
illustrated young people’s library.
Henry Altemus Company

memory that only works backward.”

The premise of a recurrent neural network architecture is

such that we require it to remember previous inputs to be

used in subsequent steps of the training. Up until now we

have made the assumption that all inputs are independent And outputs for that matter...

of each other. However, there are certain tasks where this is

not necessarily true. Think for example of applications

where the past history is important in the prediction, such

as in the time series we discussed in Chapter 1, or for

example in speech recognition, language translation or

image captioning. Remembering what the inputs that came

before the current time provide important information to

the network.

Performing the same task for every element of a sequence

of inputs makes the task recurrent and hence the name of

this type of neural networks. The output, as explained

above, is dependent on the previous calculations carried

out by the network and therefore having the equivalent of a

memory function that captures that information is important.

Consider a section A of a neural network that receives an

input Xt. The output of this section is a value yt as shown

in Figure 4.19. In a recurrent neural network we enable a RNN for short.

loop that lets us pass the information from one portion of

the network to the next. We can think of this loop in an

unfolded way as shown in the right-hand-side of Figure

4.19.

advanced data science and analytics with python 281

Figure 4.19: A diagrammatic
representation of the architecture
of a recurrent neural network.

The unfolded version of the recurrent neural network lets

us clearly see the importance of the sequence of inputs

and outputs during training. We have already mentioned

some of the applications where RNNs have become the

norm. A particular architecture that is widely used is the

so-called long short-term memory or LSTM proposed in 1997

by Hochreiter and Schmidhuber27, with several adjustments 27 Hochreiter, S. and Schmidhuber,
J. (1997). Long short-term memory.
Neural. Comput. 9(8), 1735–1780added in subsequent years. Before we get to see how LSTM

works, let us highlight some of the differences between

RNNs and the neural network architectures we have seen.

Let us consider the task of predicting what the next word in Indeed a sentence is a sequence of

words.a sentence is. We can choose a large corpus as our training

data, think for example of a book such as Erewhon, or Over

the Range 28 by Samuel Butler. First published in 1872, the 28 Butler, S. (2005). Erewhon; Or,
Over the Range. Project Gutenberg
https://www.gutenberg.org/ebooks/1906.
Accessed: 2019-09-03

book tells us about the adventures our narrator experiences

in the eponymous country he discovers. Upon arrival on the

land, the protagonist learns that, 500 years prior,

Erewhonians were made aware of the danger of

technological revolt, banning the use of anything but the

most primitive machines. The decision is explained in a

manifesto called The Book of the Machines. This is the literary

https://www.gutenberg.org

282 j. rogel-salazar

mechanism that Butler uses to raise the possibility of

conscious machines by Darwinian selection.

But we digress... After training our neural network with the

text from Erewhon, if we input the sequence: The title of the novel is the word

“Nowhere” spelt backwards,

with the letters “w” and “h”

transposed.

“There is no security”– to quote his own words– “against the

ultimate development of mechanical ...

we would expect a reasonable word to follow, based on the

training text provided. During training, we will take each

word at a time and produce a result as in the feedforward

neural networks we know and love. However, in this case

we also need to be aware of the previous inputs that have

been provided before we look at the result. This is what Refer to the unfolded version of

our RNN shown in Figure 4.19.we are doing in the unfolded version of the RNN shown

in Figure 4.19 where each X0, X1, X2, . . . , Xt corresponds

to the input words from the corpus. In turn, we produce

the predicted follow-up word y0, y1, y2, . . . , yt, and we hold

in memory the information h0, h1, h2, . . . , ht−1 about the

previous words.

In order to make the most out of our recurrent neural

network architecture, we will need to consider using

something like word embeddings to help us map words to

vectors, for instance with the help of Word2Vec29. In this 29 Mikolov, T., I. Sutskever, et al.
(2013). Distributed Representations
of Words and Phrases and Their
Compositionality. In Proceedings
of the 26th International Conference
on Neural Information Processing
Systems - Volume 2, NIPS’13, USA,
pp. 3111–3119. Curran Associates
Inc

case, to make the explanation simpler we consider a

simplistic approach such as one-hot encoding to obtain

vectors with dimension (V, 1) where V is the number of

words in the vocabulary. The values of the vectors are all

zeros, except for a 1 at the position that corresponds to the

entry in our dictionary of words. So if the vocabulary has

advanced data science and analytics with python 283

three words: [aardvark, iberian_lynx, zebra], the vector

for iberian_lynx will be [0, 1, 0].

Back to Erewhon, let us imagine that we would like to use

the RNN in Figure 4.19 to predict the next word in the

proposed sequence. The network applies a recurrence

formula in A to the input vector as well as to its previous

state. For the first word (There) there is nothing before it, so RNNs apply a recurrence formula

to the input vector as well as to its

previous state. This latter is the

memory we want the network to

retain.

nothing to remember. When we move to the next word (is)

the network applies the recurrence formula to it and takes

the previous state into consideration, i.e., the word There.

The two words are used to calculate a new state, which will

be fed back to the network in the next time step. We say that

at time t the input is is, at time t − 1 the input was There. We

continue like this for the rest of the inputs, one at a time.

We can think of the current state of the network to be given

by a combination (via an activation function) of the previous

state and the input vector as the current time step:

ht ≃ f (ht−1, Xt), (4.47)

where f is the activation function. From our discussions

about the training of feedforward neural nets, we have seen

that the weights associated with each of the nodes are the

parameters we need to fit. We therefore need to take them Not only the input and previous

states, but we also need the

weights.
into account here too. Let us denote the weight at the input

node as Wxh, and the weight at the current node as Whh, the

state at time t will then be given by:

ht = σ(Whhht−1 + WxhXt). (4.48)

284 j. rogel-salazar

where we are applying a softmax activation function. In this

Remembering more steps requires

more storage.

case the memory of the network is only of the immediate

previous step. We can say that it has a short memory.

Remembering more steps will require appropriate storage.

With this state we can calculate the output at time t as

yt = Whyht. At this point, if this is the final output of the

network, we can use backpropagation to enable us to

update the weights as we have done before. In the case of The application of

backpropagation still stands

for recurrent neural networks.
our sample sentence, after obtaining the optimal weights,

we input each of the words in the sequence, the RNN will

produce (h1, h2, h3, . . . , h15) and we calculate y16 using h15

and X16 (the one-hot encoded vector of the word mechanical).

A successful training will give us a vector y16 corresponding

to the word consciousness, which would have been the

correct prediction.

The main difference between RNNs and the other neural

nets we have discussed is the application of the feedback The feedback loop is the

distinguishing feature of RNNs.loop connecting the present state to the past decisions made.

This is what we refer to as memory in the context of neural

networks and its main goal is to exploit the information

contained in the sequence of inputs.

We mentioned above the application of backpropagation in

a recurrent neural network. In this case we need to

backpropagate through time (BPTT). We treat the full In this case, backpropagation is

actually backpropagation through

time.
sequence (in this case the sentence) as a single training

sample; the error is given by the sum of errors at each time

step (each word). So for the total error E we have that:

advanced data science and analytics with python 285

∂E

∂W
= ∑

t

∂Et

∂W
, (4.49)

As before we can apply the chain rule and as we can see

from the unrolled version of the RNN, the gradient needs to

be calculated for each time step with respect to the weight

parameter. For example for E5 we have that:

The chain rule still rules for BPTT.
∂E5

∂W
=

∂E5

∂ŷ5

∂ŷ5

∂ f5

∂ f5

∂W
, (4.50)

where f5 is the activation function at this time step. In

turn, this activation function depends on W and f4, which

depends on f3, and so on. With the weight being the same

for all the time steps in one single pass, we can combine

all the gradients so long as we express the calculations

with a well-defined, ordered sequence of calculations. It is

sometimes preferred to use a truncated BPTT approach as

the cost and time of going back over many time steps can be

quite high.

It is clear now that recurrent neural nets get their predictive

power from the dependency on previous time steps. Not dissimilar to a lot of us

humans anyway!However, they may have some trouble remembering over

long time dependencies. If the memory is only over one

time step, a recurrent neural network may have trouble with

a sentence such as:

The knight fleeing from the Jackalope is a coward,
This must be the Jackalope of

Caerbannog of course!

where the description of being a coward is for the knight

and not for the Jackalope. The issue is not just one of

286 j. rogel-salazar

interval length. As we propagate forward in the network, if

we were to encounter a gradient that is smaller than 1 and

we multiply it by a suitably small learning rate, the values

becomes ever smaller. We then use this information to

propagate the errors back through time making the problem

bigger. This leads to an issue with recurrent neural Vanishing gradients indicate issues

with remembering long sequences.networks called the vanishing gradient problem where the

network has problems remembering information from far

away in the sequence, making predictions based only on the

most recent time steps.

Conversely, we can experience exploding gradient issues

where the gradient values become increasingly large Whereas exploding gradients

assign undue importance to

certain weights.
assigning undue importance to certain weights for no good

reason. Exploding gradients can be successfully managed by

imposing a threshold on the gradients for example. Another

option is the truncated BPTT we mentioned above. In

comparison, vanishing gradients are more concerning and

they can be dealt with by using architectures such as LSTM.

4.4.4 Long Short-Term Memory

A long short-term memory neural net is a type of

RNN able to remember over longer-term dependencies. The

chain of repeating modules we have described above still Long short-term memory, or

LSTM for short.holds true in an LSTM. However, the inner workings of

the module A shown in Figure 4.19 is no longer the simple

application of an activation function such as a ReLU or a

hyperbolic tangent.

advanced data science and analytics with python 287

Figure 4.20: The inner workings of
a long short-term memory neural
network.

Instead, each module of the LSTM has 3 gates, namely the

Forget Gate, the Input and the Output Gates. These are

shown in Figure 4.20, and we will consider each of them

in turn. The main cell state of the LSTM is the horizontal

line that runs straight through the top of the diagram. The

architecture of the network relies on the addition or removal

of information to this cell state through the gates mentioned

above.

For example, in the Forget Gate we have a sigmoid neural

network layer (the box marked with S) followed by a

pointwise multiplication operation (the circle marked with

X). This lets us decide what information is allowed to pass to Refer to the Forget, Input and

Output Gates in Figure 4.20.the cell state. It takes information form the previous state

ht−1 and the input Xt generating a value between 0 and 1

for each cell state Ct−1. The output gt of this gate can be

288 j. rogel-salazar

expressed as:

gt = S
(

Wg · [ht−1, Xt] + bg

)

. (4.51)

If the value generated is a 0, it indicates that the information

will be forgotten, whereas a 1 will enable the information to

be remembered. In short, the Forget Gate lets us decide how

much past information we should remember

The next stage in the process is the Input Gate where we are Also called Update Gate as we

shall see.able to decide the amount of information that this module

will add to the current cell state. In other words, if the

Forget Gate enables us to forget information of the past

state, this gate lets us decide what to remember in this cell

state. The Input Gate has two stages, first a sigmoid layer

that picks what values will be updated:

Remember the 0s and 1s thrown

by a sigmoid function.it = S (Wi · [ht−1, Xt] + bi) . (4.52)

Then we have a hyperbolic tangent layer that proposes new

potential cell state values C̃t:

The importance of values is

modulated by the [−1, 1] output of

the hyperbolic tangent.
C̃t = tanh (WC · [ht−1, Xt] + bC) . (4.53)

The outputs of the two layers are then combined (circle

marked with X in Figure 4.20 inside the Input Gate

boundary), which will be used to update the state given by

the top horizontal line in our diagram.

advanced data science and analytics with python 289

We need to update the old cell state Ct−1. In reality all the

decisions have already been made in the previous stages

we just need to apply the calculations. First we multiply the

output of the Forget Gate gt with the previous state Ct−1,

forgetting parts of the old state. We then add the result to

the filtered candidate values C̃t from the Input Gate (in the

At the circle marked with + in

Figure 4.20.

top horizontal line in the diagram)

Ct = gtCt−1 + itC̃t. (4.54)

We are now at the Output Gate of our module, where we

That is why we also call it the

Update Gate.

decide the portion of the current cell that will make it to the

output. We apply a sigmoid layer for this purpose:

And finally, to the Output Gate.ot = S (Wo · [ht−1, Xt] + bo) . (4.55)

At the same time we put the cell state obtained from the

previous stages Ct through a hyperbolic tangent layer to

map the values between −1 and 1 and combine the outputs

filtering out the portions of the cell state we want to output,

i.e., ht:

ht = ot tanh(Ct). (4.56)

The description presented above covers the main

components in an LSTM. There are other variations such as

the Gated Recurrent Unit (GRU)30 which combines the 30 Cho, K., B. van Merrienboer,
et al. (2014). Learning
phrase representations using
RNN encoder-decoder for
statistical machine translation.
CoRR abs/1406.1078

Forget and Input Gates into a single unit. It also merges the

cell state and hidden state resulting in simpler inner

architecture.

290 j. rogel-salazar

If you are interested in a comparison of different LSTM

architectures, take a look at “LSTM: A Search Space

Odyssey”31 were the authors present such comparison. 31 Greff, K., Srivastava, R. K.,
Koutník, J., et al. (2017). LSTM:
A Search Space Odyssey. IEEE
Trans. Neural Netw. and Learning
Sys. 28(10), 2222–2232

They find that different LSTM architectures perform more or

less the same as standard LSTM. They show that the Forget

Gate and the output activation function are the most critical

components.

4.4.5 Long Short-Term Memory Networks in Action

Let us create a neural network that is able to generate a

plausible sequence given a set of training data. We will use This kind of models is called

generative... for obvious reasons.a character-level language model. This means that we will

give our LSTM recurrent neural network a number of

character sequences and request for the probability

distribution of the next character in the sequence. We can

use the model to generate new sequences (hopefully

coherent sentences) one character at a time. An interesting

blog entry called The Unreasonable Effectiveness of Recurrent

Neural Networks32 covers this same challenge including 32 Karpathy, A. (2015). The
Unreasonable Effectiveness of
Recurrent Neural Networks.
https://karpathy.github.io/2015/05/21/rnn-
effectiveness/. Accessed:
2019-09-09

different types of corpora.

Our starting point requires us to get hold of a large piece of

text. We will use the text mentioned in Section 4.4.3, i.e., the

1872 fiction novel Erewhon, or Over the Range33 by Samuel 33 Butler, S. (2005). Erewhon; Or,
Over the Range. Project Gutenberg
https://www.gutenberg.org/ebooks/1906.
Accessed: 2019-09-03

Butler. The text can be found in the Project Gutenberg site.

After downloading the text in UTF-8 format and it is saved

in a plain file called erewhon.txt we can start our journey

over the range. As usual we start by loading some libraries:

https://karpathy.github.io
https://www.gutenberg.org
https://karpathy.github.io/2015/05/21/rnn-effectiveness/.Accessed:

advanced data science and analytics with python 291

import numpy as np

import random

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Dropout

from keras.utils import np_utils

from keras.layers import LSTM

from keras.callbacks import ModelCheckpoint

We are familiar with the calls made above, expect perhaps

We already know how to do this

with our eyes closed.

for the last two entries. LSTM, however, should be pretty

straightforward after reading the preceding section.

ModelChekpoint helps us request information from our

architecture at desired points, e.g., at the end of every epoch.

Let us load the text:

We open and read the file as usual.

book = ’erewhon.txt’

with open(book, ’r’) as file:

text = file.read().lower()

n_text = len(text)

We can see what the length of our corpus is:

The number of characters is the

length of our text.

> print(’Book Text Length: {}’.format(n_text))

Book Text Length: 483134

We have over 480k characters in the text. We will be

generating text character-by-character and therefore we

require a set of the characters used in the text. It is this set

that becomes our “vocabulary” for this task.

292 j. rogel-salazar

chars = sorted(list(set(text)))

n_vocab = len(chars)

We can now ask about the cardinality of the character set

We calculate a set from the

characters in the corpus.

used in the corpus:

> print(’Number of characters used: {} ’.\

format(n_vocab))

Number of characters used: 62

There are 62 different characters used, more than the typical

There are 62 entries in the set,

more than the usual 26 letters in

English.

26 characters in the English alphabet. This is because there

are some symbols, punctuation and other characters too:

Perhaps an opportunity to pre-

process our data.

> print(chars[:5], chars[-5:])

[’\n’, ’ ’, ’!’, ’"’, ’#’]

[’y’, ’z’, ’{’, ’}’, ’\ufeff’]

We will need to keep track of the characters used, but not

only that, we will need to pass a numerical representation to

the neural network. To that end, we will create an index for

the characters:

We are using a dictionary to create

our vocabulary index. Great!

char_ixs = dict((c, i)

for i, c in enumerate(chars))

It may be needed to reverse back the index, so that any

prediction can be traced back to the character in question:

advanced data science and analytics with python 293

ixs_char = dict((i, c)

for i, c in enumerate(chars))

Another important decision that needs to be made is the

We also need the reverse index.

length of the training sequences we will feed into the LSTM.

In this case we are going to use a fixed length of 40

characters. Other approaches may include partitioning the

You can try other length

sequences.

text into sentences and pad them to take into account long

and short sentences.

In order to keep things in check, we will generate sequences

jumping a few characters. We do this with a step of 3.

Finally, the training sequences, along with the next character

in the sequence, will be stored in lists:

We store the training sequences

in rawX and the next characters in

rawy.

seq_len = 40

step = 3

rawX = []

rawy = []

Let us generate the sequences, i.e., sentences, that will be

fed to the neural network:

We append the sequences to the

lists above.

for i in range(0, len(text) - seq_len, step):

rawX.append(text[i: i+seq_len])

rawy.append(text[i+seq_len])

n_sentences = len(rawX)

294 j. rogel-salazar

We can check how many sequences have been generated:

> print(n_sentences)

161032

We have over 160k sentences to train our network. Let us

This is the number of sequences

that will be used to train our

recurrent neural network.

take a look at one of them:

This is sequence 900 in our

dataset.

> print(rawX[900])

machines as an attempt to reduce mr. dar

and the next character in this sequence is:

And this is the next character for

sequence 900.

> print(rawy[900])

w

We can get a glimpse to the Darwinian references used
I am no RNN, but surely that

would be a reference to Darwin

himself!

by Butler in the description of the Erewhonian machines.

We need to encode these sentences and next characters

to be able to pass them to the neural network. We will

create some Boolean arrays to hold the information. For the

sequences we need an array to hold the number of sentences

(161032) by the length of the sentence (40) by the number of

characters in our vocabulary (62). For the next characters

we only need the number of sentences by the number of

characters:

advanced data science and analytics with python 295

X = np.zeros((len(rawX), seq_len, len(chars)),

dtype=np.bool)

y = np.zeros((len(rawy), len(chars)),

dtype=np.bool)

Each character in each sentence can now be encoded with

Our sequences and next characters

are now transformed into Boolean

arrays.

the help of the index we created earlier on:

We use our dictionary to encode

the characters.

for i, sentence in enumerate(rawX):

for t, char in enumerate(sentence):

X[i, t, char_ixs[char]] = 1

y[i, char_ixs[rawy[i]]]=1

We have completed our data processing and we are ready

to define the architecture of our LSTM neural network. We

will use the sequential API and try to keep the architecture

simple at this stage:

We use the sequential API in

Keras for this implementation.

model = Sequential()

model.add(LSTM(128, input_shape=(seq_len,

len(chars))))

model.add(Dropout(0.2))

model.add(Dense(len(chars), activation=’softmax’))

We start with a long short-term memory layer with 128

units expecting an input with dimensions of the length of

the sequence by the number of characters. We then apply a

dropout layer setting 20% of the inputs units to 0. Finally,

we connect this to a dense output later with a softmax

activation function. Let us look at a summary of the model:

296 j. rogel-salazar

> print(model_summary())

Layer (type) Output Shape Param #

===

lstm_1 (LSTM) (None, 128) 97792

dropout_1 (Dropout) (None, 128) 0

dense_1 (Dense) (None, 62) 7998

===

Total params: 105,790

Trainable params: 105,790

Non-trainable params: 0

This model requires us to train 105, 790 parameters. For that

We need to train 105, 790

parameters in this model.

purpose we need to compile our model while providing an

optimiser and an appropriate loss function:

from keras.optimizers import RMSprop

opt = RMSprop(lr=0.01)

model.compile(loss=’categorical_crossentropy’,\

optimizer=opt)

We may be interested in a very accurate model that predicts

each character in the text perfectly. That may take a more

intricate architecture and a longer training time. In this case,

we will request the model to provide us with a view of the This model may not be the most

accurate, but then again it is a very

simple one.
improvements achieved in the training by recording a model

to a file whenever this happens at the end of an epoch. This

is why we are interested in the ModelCheckpoint method

introduced earlier on in this section.

advanced data science and analytics with python 297

We start by defining a file name including information about

the given epoch and loss, we will pass this information to

the model checkpoint and provide this as a list of callbacks

to the model:

fname= ’weights-improv-{epoch:02d}-{loss:.4f}.hdf5’

checkpoint = ModelCheckpoint(fname,\

monitor=’loss’, verbose=1,\

save_best_only=True, mode=’min’)

ModelCheckpoint lets us keep

track of the improvements in the

model during training.

We can now start training our model:

model.fit(X, y, epochs=60, batch_size=128,

callbacks=[checkpoint])

We are training the model for 60 epochs with batches of 128

sequences. In the instance when this model was run, the

model did not manage to get any further improvements in

the optimisation of the loss function after the 59th epoch.

The latest file produced by the check point was

weights-improv-59-1.3969.hdf5.

The model obtained can be used to generate some text. But

before we do that, let us make sure that we are able to

obtain appropriate samples out of the probability array. We We need to ensure that we can

obtain appropriate samples out of

a probability array.
will use the fact that we are using a softmax function and

apply a “temperature” to control the randomness of the

predictions made. If the network produces class

probabilities with logit vector z = (z1, z2, . . . , zn) by

applying a softmax function, then we are able to calculate

298 j. rogel-salazar

the probability vector q = (q1, q2, . . . , qn) with qi given by

the following expression:

qi =
exp(zi/T)

∑j=1 exp(zj/T)
, (4.57)

where T being the temperature parameter. When T = 1,

we are computing the softmax function directly on the

logits without scaling. When T = 0.5 for instance, we are

effectively doubling the logits and therefore we have larger

values of the softmax function. This makes our predictions

more confident but also more conservative. Let us create a

function to calculate the sample:

This function lets us obtain those

samples.

def sample(p, temperature=1.0):

p = np.asarray(p).astype(’float64’)

p = p**(1/temperature)

p_sum = p.sum()

sample_temp = p/p_sum

return np.argmax(np.random.multinomial(\

1, sample_temp, 1))

Let us pick a random number to get a sequence. We will

generate characters one at a time and they will be added to

the initial sentence:

We pick a sequence at random.

start_ix=random.randint(0, len(text) - seq_len - 1)

generated= ’’

sentence = text[start_ix: start_ix + seq_len]

generated += sentence

advanced data science and analytics with python 299

An initial sentence will be given for example by:

Your sentence will surely be

different.

> print(sentence)

ily believe to be faithful representatio

Let us generate 400 characters with the model. Remember

that we will get predictions in terms of indices and they

will need to be translated back into characters using the

dictionaries we defined earlier on in this section:

We generate 400 characters with

our LSTM. Remember that we

need to translate back using our

reverse index.

for i in range(400):

x_pred = np.zeros((1, seq_len, len(chars)))

for t, char in enumerate(sentence):

x_pred[0, t, char_ixs[char]] = 1.

preds = model.predict(x_pred, verbose=0)[0]

next_index = sample(preds, diversity)

next_char = ixs_char[next_index]

generated += next_char

sentence = sentence[1:] + next_char

The generated text for the sequence above would look

similar to the following:

Not bad, particularly when

considering that this was

generated character-by-character

with a simple LSTM.

ily believe to be faithful representation with

their body had a secress of a strong to be one of

the first and single something that we really on

the ancerty and reason in the country as a sense

of the mainty of me the work and well all the wood

300 j. rogel-salazar

in the most concesing the work down his attant on

the world that the stubles, and seemed to a does

we should be dead, and the england for my proports

of for the statue to the parents for the mos

It may not seem like much, but bearing in mind that the text

was generated one character at a time and without prior

knowledge to the English language, the model was able to

generate word-like groups of characters most of which are

actual English words such as “reason”, “work”, “england”,

“country or “dead”. The results are by no means perfect, but

remember that the neural network architecture we build

only had a single LSTM layer.

4.5 Summary

It has been a long journey, and I hope you have enjoyed

the ride. In this chapter we have covered some of the most

important aspects behind the magic and “unreasonable

effectiveness” of neural networks. Given the influence

that neural networks and deep learning have and with the

number of use cases growing, this is truly an area in data

science that any Jackalope data scientist needs to cover.

We started our journey with a trip down memory lane,

where we looked at an abridged historical account of some

of the developments that have made neural networks shine.

We saw how some of the ideas behind modern architectures

started life much earlier than a lot of us imagine. Indeed

advanced data science and analytics with python 301

the inspiration provided by biological neurons is a useful

analogy but realising the main differences is also important.

The development of the perceptron is a clear step in the

development of what we call deep learning and a good

undestanding of its capabilities and limitations is a must.

Looking at the directed graphs used to represent neural

nets, made out of nodes and layers, we get a clear picture

of the flow of information, from layer to layer and node

to node. We saw how the receiving nodes take both the

input information and the weight of the connecting edges

to compute a combined output. All this, with the aid of an

activation function. In turn this output is sent to the next set

of nodes in the following layer. Deciding on the number of

layers and nodes is an important task and we saw how we

can go from representing linear patterns through to more

complex representations simply by changing the number of

nodes in a hidden layer.

After getting a good understanding of the feedforward step

in a neural network, we described the way the model can

learn from its mistakes by looking at the errors incurred

by the predictions after a single feedforward pass. The

key to adjusting the weights in the network relies on the

application of the chain rule to backpropagate the errors.

Several round trips of feedforward and backpropagation

enable the model to improve its predictions. With this

information we were able to create our first neural network

from scratch and looked at the effect that the number of

nodes in a layer has in the overall classification boundaries

generated by the model.

302 j. rogel-salazar

At this point we were able to take a look at expanding the

number of layers, nodes and connections within a neural

network and entered the world of deep learning. We used

Keras to implement these architectures as it offers a friendly

and powerful manner to build our networks. We recreated

the network we built from scratch and discussed the

implementation of two popular architectures, namely

convolutional neural networks (CNNs) and recurrent neural

networks (RNNs). We created an image classification

network to exemplify the work of CNNs, and generated

character-level language with the help of a long short-Term

memory RNN.

No brainer!

5

Here Is One I Made Earlier: Machine Learning

Deployment

We have covered a lot of ground in this and its

companion book Data Science and Analytics with Python1. We 1 Rogel-Salazar, J. (2017). Data
Science and Analytics with Python.
Chapman & Hall/CRC Data
Mining and Knowledge Discovery
Series. CRC Press

have discussed the trials and tribulations of Jackalope data

scientists, seen the differences between supervised and

unsupervised learning, and talked about models such as

regression, decision trees, time series, neural networks,

logistic regression and natural language processing

techniques among others. It is a large landscape and there

are many areas into which we could delve much deeper, or

indeed some others we have not even touched.

Of all those areas, in this chapter we will discuss some

aspects that we need to take into account in order to not

only build a powerful model, but also make it part of a data We can build powerful models,

but who will use them?product that can be used by its intended consumers. Not

only does this require the close collaboration of the

triumvirate formed by a Jackalope data scientist, project

304 j. rogel-salazar

manager and data architect, but also the support of a

product owner and subject matter experts.

We will first talk about data products, the requirement to

build pipelines and processes and the need for creating

machine learning models able to perform scoring on device.

We will then provide an example for deploying a simple We will build an iOS app!

machine learning model in a mobile device such as an

Apple iPhone. To that end we will use some of the

capabilities that the ecosystem for these devices offers,

including the use of XCode and the Swift programming

language.

5.1 The Devil in the Detail: Data Products

Nothing as pervasive as a product. We all recognise

them, buy them, sell them and/or use them. A product is a

good idea, method, information, object or service that has

been created as a result of a process in order to satisfy a

need or want. Typically we think of products as tangible Products are not exclusively

tangible objects!objects. With that being the case, it could be surprising to us

when we first hear about a data product. We can think of a

data product as any other product, but one whose existence

meets the need or want we mentioned above through the

employment of data.

That definition is still quite broad and wide-encompassing;

after all, a number of digital products out there use data.

Things such as websites or portals for example. In our case

we would like to concentrate on those data products whose

advanced data science and analytics with python 305

main raison d’être is centred around data. You may think

that we are splitting hairs here, but hear me out. A data Ok, read me out... This is not a

podcast after all!product is still a product, and thus the standard

considerations of developing a product do apply: Meet a

customer need, improvement through feedback,

competition, prioritisation, etc. You name it. That is true

even for those super expensive products in fictional planet No bananas on Algon though!

Algon, the fifth world in the system of Aldebaran, the Red

Giant in the constellation of Sagittarius.

Nonetheless, a data product distinguishes itself for the

development considerations we need to make around the

availability, processing and meaning of data. No wonder

that the powers of a Jackalope data scientist are in high Or indeed of a rangale of

Jackalope data scientists.demand around the creation of data products. The main

consideration is therefore the incorporation of data, and

data science techniques while going beyond data analysis,

to the provision of value for the customer. It is the idea of

putting data understanding into production.

We can think of different categories of data products

including:

• Raw data - Making data available though appropriate

pipelines.

• Derived data - Processing and calculating fields that can

be used later in the funnel.

• Algorithms - This has been the main topic of our A categorisation of data products

in increasing order of complexity.discussions. We pass some (raw/derived) data through

an algorithm to obtain understanding useful to the users.

306 j. rogel-salazar

• Decision support - Enabling the user to make a decision

based on better information. The aim is to provide the

information in an easy way to be consumed. These are

the products we will talk about in this chapter.

• Automated decision-making - This is closer to the overall

goal of artificial intelligence where the process of making

a decision is delegated to the machine without user

intervention.

As we move from raw data into automated decisions, not

only do we move in an increasing scale of complexity,

requiring different skills in the development of the product, The different data product

categories above have very

different intended audiences.
but also the products have different intended audiences. For

raw and derived data products, as well as algorithms, the

audience tends to be technical. However, for the decision

support and automated decision-making, the end users will

tend to be more specialised and perhaps not even technical

at all.

We have been considering the usage of algorithms as data

products to be consumed by us (Jackalope data scientists)

to understand the patterns available in our data. In this

chapter we are concerned with the next level in the scale

above, where the available data is provided to a suitable

algorithm to extract an insight and we are then interested in I know, I know... actionable

insights...providing this power to our users or customers, particularly

non-technical ones.

As it is the case with many other products, they do not

simply arise fully formed, like Venus from the sea-foam.

Instead, we need to apply investigation, feedback and

advanced data science and analytics with python 307

expertise to hone in on the problem we are trying to solve.

A methodology that comes to mind in these situations is

Agile2, which gives us the opportunity of exploring and 2 Stellman, A. and J. Greene (2014).
Learning Agile: Understanding
Scrum, XP, Lean, and Kanban.
O’Reilly Media

understanding our problem, while being flexible providing

us with an opportunity to learn, evolve, pivot and create

better products. The idea of a unicorn data scientist is not

the ideal in an agile development cycle, instead a team of

shrewd Jackalope data scientists will enable the wider team

to be nimble and multi-functional.

The multi-functional team we refer to is not just made out

of data scientists. In general we require data architects,

engineers, product managers and subject matter experts in Working in a multi-functional

team under a methodology such

as Agile enables the successful

creation of good products.

order to create a successful data product. Data scientists

need to liaise with engineers to obtain a reliable dataset;

subject matter experts need to provide their know-how at

crucial development stages and verify how useful results

may be, while informing product managers about the

direction of travel for the product. Communication among

all these agents is therefore paramount and Agile may be The fact, you have standups in the

morning, does not mean you are

applying Agile.
able to facilitate this as part of the ceremonies that form part

of a good implementation of the methodology.

There is no magic number for the amount and number of

data sources required by a data product. Data science is a

hungry, even greedy, affair: The more data available, the

better. In that sense, the assessment that the team will need Data science is a greedy discipline,

the more data the better!to make is not only about the data quantity and quality, but

also about the timeliness of data availability, as well as the

data combinations that can be pursued in order to create

models that benefit/improve the product. Furthermore,

308 j. rogel-salazar

depending on the type of algorithms employed in the data

product, it may be possible to make indirect observations of

signals in the data to predict useful information.

All in all, as any data product is still a product it will need

to meet the needs or solve the problems that real

users/customers/people have. The important thing

therefore is to start with the problem statement and iterate
Starting with the problem

statement is paramount.

it. There is no doubt that technology is an important factor

in the successful development of a data product, but it is not Or any product actually!

a panacea. Starting up with the technology and finding a

problem to solve is the equivalent of using a hammer to

tighten a screw. In some cases it may work, but it would be

better to find technology that helps solve the problem at

hand.

The success of a good data product relies on the

collaboration and effort of the team behind it and, to a

larger extent, on the users whose pain points the product After all, if the users do not see

the value in the product, they will

not use it.
helps mitigate. As such, our task as Jackalope data scientists

is to use the most appropriate data to employ in our

development, make use of suitable algorithms and

collaborate with data engineers, architects, product and

project managers, and yes, even users. We can then let our

tools, languages and platforms deliver a solution to the

problem statement.

This may take many forms and one way to tackle this
The creation of a user-friendly

interface may help in serving the

need of our customers better than

handing them a Python script.

challenge is through the creation of user-friendly interfaces.

These applications let users consume the results of the data

product. For instance, consider a product that applies a

advanced data science and analytics with python 309

multivariate regression algorithm to predict house prices. It

supports users that are interested in climbing the property We will build a similar solution

later on; stay tuned!ladder and they can be better served with the help of a

purpose-built application that makes the prediction easier to

compute. Compare this to handing them a programming

script or a table with numbers.

The deployment of machine learning algorithms as part of a

data product can be achieved in various ways. Depending

on the ultimate goal of the product and its intended

audience this may range from programmatic authoring,

scheduling and monitoring of data pipelines with tools such

as Apache Airflow3 or Luigi4; within platforms such as 3 Apache Airflow (2014). Apache
Airflow Documentation.
https://airflow.apache.org.
Accessed: 2019-09-30
4 Spotify (2014). Luigi.
https://github.com/spotify/luigi.
Accessed: 2019-09-30

Dataiku, IBM Data Science Experience and Azure; or in

device, where processing happens directly in a smart phone

for example. The extension to this is the concept of machine

learning at the edge, where computing power is distributed

across a network of devices, making use of the Internet of

Things, instead of a centralised system in the cloud. We may IoT for short.

not cover here computing at the edge, but let us take a look

at deployment on a single device.

5.2 Apples and Snakes: Core ML + Python

With the high availability of a large number of

connected devices, the computing power that can be

harnessed for the application of machine learning is huge. A

lot of these devices are small enough to be carried around Here, we are interested in

harnessing the power of mobile

devices.
with us and are part of our daily lives. Furthermore, they

come with a variety of sensors and monitors that can gather

https://github.com/spotify
https://airflow.apache.org

310 j. rogel-salazar

data, which in turn can be used by the data products we

build for the benefit of our users.

It is possible to implement our data products to be deployed

in a mobile device, enabling the machine learning The processing happens directly in

the device!algorithms to process and execute directly there, without

the need of sending data or information to a server and

coming back to the user. This has advantages for data

privacy as the information never leaves the user’s device

and reduces friction in terms of latency for the user, for We want to deliver our models

into the hands of our users.example. As you can see, this offers a number of

advantages, as the machine learning models we develop are

delivered into the hands of your users, quite literally.

There are some tools that enable the deployment of machine

learning models into a device, taking a trained model Although we are concentrating our

discussion in the Apple ecosystem,

there are other solutions out there!
and encapsulating it in a format that is compatible with

the ecosystem of the device in question. In this case we

are going to concentrate on some of the tools that Apple

has made available to developers in order to integrate

machine learning workflows into applications, aka apps. Our aim is to deploy a machine

learning model into an app.One such tool is Core ML which is a computer framework,

in other words a software abstraction that enables generic

functionality to be modified as required by the developer to

transform it into software for specific purposes. This enables

us to develop complex projects or simple apps.

Core ML is a framework created and provided by Apple to

speed up the development of apps that use trained machine

learning models. Notice that word we wrote in italics in

the description of the framework: trained. This means that

advanced data science and analytics with python 311

the model has to be developed externally with appropriate

training data for the specific project in mind. For instance if Core ML takes pre-trained

machine learning models and

makes them available with in an

app.

you are interested in building a classifier that distinguishes

Jackalopes from hares, and horses from unicorns, then you

need to train the model with lots of images of Jackalopes

and hares, horses and unicorns first. Then you can apply

the Core ML framework to integrate the model within an

app.

Core ML supports a variety of machine learning models,

from generalised linear models (GLMs for short) to neural Check the Apple Developer

documentation for further model

supported in the future.
networks. A summary of the models that can be used with

Core ML is shown in Table 5.1. It is possible for you to

develop your own custom conversion tool in case your

model is currently not supported. Core ML also helps with

the task of adding the trained machine learning model

to your application by automatically creating a custom

programmatic interface that supplies an API to your model. API stands for Application

Programming InterfaceAll this is within the comfort of Apple’s own IDE: Xcode.

There is an important point to remember. The model has

to be developed externally from Core ML, in other words

you may want to use your favourite machine learning

framework, computer language and environment to cover

That word again; in this case

think Python libraries such as

Scikit-learn for instance.
the different aspects of the data science workflow. You

can read more about this in Chapter 3 of Data Science and

Analytics with Python book5. In any case, whether you use 5 Rogel-Salazar, J. (2017). Data
Science and Analytics with Python.
Chapman & Hall/CRC Data
Mining and Knowledge Discovery
Series. CRC Press

Scikit-learn, Keras or another supported framework, the

model you develop has to be trained (tested and evaluated)

beforehand. Once you are ready, Core ML will support you

in bringing it to the masses via your app.

312 j. rogel-salazar

Model Type Supported Models
Supported
Frameworks

Neural
networks

Feedforward,
convolutional, recurrent

Caffe v1, Keras
1.2.2+

Tree
ensembles

Random forests, boosted
trees, decision trees

Scikit-learn 0.18

KGBoost 0.6

Support
vector
machines

Scalar regression, multi-
class classification

Scikit-learn 0.18,
LIBSVM 3.22

Generalised
linear
models

Linear regression,
logistic regression

Scikit-learn 0.18

Feature
engineering

Sparse vectorisation,
dense vectorisation,
categorical processing

Scikit-learn 0.18

Pipeline
models

Sequentially chained
models

Scikit-learn 0.18

Table 5.1: Models and frameworks
supported by Core ML.

In 2019 Apple announced the release of an application

called Create ML6 bundled within the set of tools they 6 Apple Inc. (2019b). Core ML.
https://developer.apple.com/
documentation/createml. Accessed:
2019-10-01

make available to the developer. It lets us create and deploy

a machine learning model and the aim of the tool is to

democratise training of models as the output from Create

ML is already in the Core ML format. This means that the

step of converting your model is not required. Create ML

supports workflows for computer vision, natural language

processing, sound classification, activity classification (using

https://developer.apple.com
https://developer.apple.com

advanced data science and analytics with python 313

motion sensor data) and tabular data. We will not cover

the use of Create ML here, as it is outside the remit of this

book. However, the interested reader can refer to the Apple

Developers’ site for more information.

As for the advantages of Core ML, Apple mentions7 that 7 Apple Inc. (2017a). Core ML.
https://developer.apple.com/
documentation/coreml. Accessed:
2019-10-01

it is optimised for on-device performance. This minimises

the memory footprint and power consumption of the app.

Also, the fact that the model runs strictly on the device

ensures the privacy of user data and guarantees that the

app remains functional and responsive when a network

connection is unavailable. In order to use our model within

our app, we need to translate our implementation into a

.mlmodel format. Let us find out more about how we can do

that by building our own app.

5.3 Machine Learning at the Core: Apps and ML

In this section we will cover the end-to-end creation

of a simple app with machine learning at its core. Starting Yes, at its (Apple) Core (ML)!

with the creation of a suitable Python environment for the

creation of the model and its translation to Core ML format,

all the way to running it in your iPhone. We are largely

following the workflow depicted schematically in Figure

5.1, starting with the development in Python using libraries

such as Scikit-learn and Keras. We then will convert our

Python model into Core ML using Core ML Tools. We then

integrate the translated model into our app development

and finally deploy the app to our users.

https://developer.apple.com
https://developer.apple.com

314 j. rogel-salazar

Figure 5.1: We follow this
workflow to deploy our machine
learning models to our app.5.3.1 Environment Creation

In preparation to training a model which will be

converted into Core ML so as to be integrated within our

application, it is best practice to make sure we have a Creating an environment for Core

ML is best practice.suitable environment to work on. When Core ML first came

to light, the Core ML module only supported Python 2!

Fortunately, things have moved on since then and now

Python 3.x is also supported.

In order to ensure reproducibility of the stack, we will

create an environment with the appropriate modules. In

this case we are using Anaconda and will create a conda You may use your favourite

Python distribution.environment called coreml with Python 3.7; it will include

some of the libraries we may be using such as Scikit-learn,

Pandas, matplotlib, etc.

> conda create --name coreml python=3 ipython

jupyter scikit-learn pandas matplotlib

advanced data science and analytics with python 315

We need to install the Core ML Tools module8 and the 8 Apple Inc. (2017b). Core ML tools.
https://github.com/apple/coremltools.
Accessed: 2019-10-01easiest way to do this is to use pip install

> conda activate coreml

(coreml)

> pip install coremltools

5.3.2 Eeny, Meeny, Miny, Moe: Model Selection

Now that we have a suitable environment to carry out

our development, we need to get to the ever so difficult

task of choosing a model. This is not as simple as picking Remember to use the data science

workflow. Start with the problem

statement and use appropriate

data.

up one of the many algorithms available to us, and the

decision depends to a large extent on the use case at hand.

The main recommendation is therefore to consider the

problem statement that we are trying to address, obtain the

appropriate data to help with answering the problem and

brainstorm with the rest of the team to assess best actions.

Model selection will also be dictated by the metrics of your

algorithm and indeed the application of best practices in

terms of data splitting, feature engineering, cross-validation,

etc. We will not cover these steps here, as they have been

addressed in Chapters 1 and 3 of Data Science and Analytics

with Python9. Instead, we are interested in the steps that 9 Rogel-Salazar, J. (2017). Data
Science and Analytics with Python.
Chapman & Hall/CRC Data
Mining and Knowledge Discovery
Series. CRC Press

follow the successful selection of the model. Let us consider

for the sake of argument and without loss of generality that

we are relying on our good old friend, the dependable linear

regression model.

https://github.com

316 j. rogel-salazar

We are indeed all familiar with a line of best fit, and surely

many of us remember doing some of it by hand! Also, who You know who you are!

has not played with Excel’s capabilities to perform a linear

regression? Let us remind ourselves of some of the basics: A

linear regression is a model that relates a variable y to one

or more explanatory (or independent) variables xi.

The parameters that define the model are estimated from

the available data relevant to the problem. Remember that

there are a number of assumptions about the explanatory

variables. You can find more information in Chapter 4 of We can think of the goal of linear

regression as finding a line of best

fit.
the companion book mentioned above. We can think of the

goal of a linear regression model to draw a line through the

data as exemplified in Figure 5.2. In such a case, data for the

independent variable x1 is used to determine the value of y.

Let us take the case of 2 independent variables x1 and x2.

The linear regression model to predict our target variable y

is given by:

y = α + β1x1 + β2x2 + ǫ, (5.1)

where α and βi are the parameters to be estimated. Once the

estimation is obtained, we use these parameters to generate

predictions. With the aid of techniques such as least squares,

it is possible to estimate the parameters α, β1 and β2 by Once we have estimations for α, β1

and β2 we can use the model to

score new, unseen data points.
minimising the sum of the squares of the residuals, i.e.,

the difference between an observed value, and the fitted

value provided by a model. Once we have determined the

parameters, we are able to score new (unseen) data for x1

and x2 to predict the value of y.

advanced data science and analytics with python 317

Figure 5.2: A line of best bit for
the observations y dependent of
features x1.In this case, we will show how we can do this for a famous

dataset called “Boston House Prices” where our aim is to

predict the price of a house in Boston given a number of

features or attributes of the property. We will use a couple We will use the “Boston House

Prices” dataset in the rest of this

chapter.
of variables such as the number of bedrooms in the house

and a crime index for the area. Remember that the aim will

be to show how to build the model to be used with Core

ML and not build a perfect model for the prediction.

5.3.3 Location, Location, Location: Exploring the Data

We consider that our problem statement is the

challenge of predicting the price of properties in a city.

318 j. rogel-salazar

What about concentrating in Boston? It seems like a great

location to explore. There is a bit of a caveat in this case; we Other time travelling methods

may be available... at some time or

other...
will transport ourselves with our TARDIS to the 1970s as the

dataset we will use comes from that time.

The dataset in question has information collected by the U.S.

Census Service concerning housing in the area of Boston,

Massachusets and originally published by Harrison and

Rubinfeld10. The original aim for this dataset was to assess 10 Harrison, D. and D. Rubinfeld
(1978). Hedonic prices and the
demand for clean air. J. Environ.
Economics and Management 5,
81–102

the willingness that market participants would have to pay

for clean air. That is the reason the dataset includes date on

the concentration levels of nitric oxides.

To make our discussion more manageable, we will use

our knowledge of one of the most well-known models in

statistics and yes, machine learning: Linear regression. We

know that we can relate the values of input parameters xi

to the target variable y to be predicted. Let us however do

some basic exploration of our dataset.

The dataset contains 506 data points with 13 features:

• CRIM - per capita crime rate by town

• ZN - proportion of residential land zoned for lots over

25, 000 sq.ft. These are the features or attributes

that are included in the “Boston

House Prices” dataset.• INDUS - proportion of non-retail business acres per town

• CHAS - Charles River dummy variable (1 if tract bounds

river; 0 otherwise)

• NOX - nitric oxides concentration (parts per 10 million)

• RM - average number of rooms per dwelling

advanced data science and analytics with python 319

• AGE - proportion of owner-occupied units built prior to

1940

• DIS - weighted distances to five Boston employment

centres

• RAD - index of accessibility to radial highways

• TAX - full-value property-tax rate per $10, 000

• PTRATIO - pupil-teacher ratio by town

• B - 1000(Bk − 0.63)2 where Bk is the proportion of black

population by town

• LSTAT - percentage of lower status of the population

The target is called MEDV and it represents the median

value of owner-occupied homes in the $1, 000s.

We are going to use Scikit-learn and fortunately the dataset

comes with the module. The input variables are included That is awesome, right?

in the data method and the price is given by the target.

We are going to load the input variables in the dataframe

boston_df and the prices in the array y:

We retrieve the dataset directly

from Scikit-learn!

from sklearn import datasets

import pandas as pd

boston = datasets.load_boston()

boston_df = pd.DataFrame(boston.data)

boston_df.columns = boston.feature_names

y = boston.target

320 j. rogel-salazar

We are going to build our model using only a limited

number of inputs. The reason for this decision is two-fold:

We are simplifying the workflow to fit our discussion, but

more importantly when we put the data product in the For ease of discussion, we will

only use two variables in our

model: Crime rate and number of

rooms.

hands of our users, we would like them to use a friendly

version of the prediction where they are able to modify a

few features, rather than a bloated application no one would

like to use. In a more realistic situation, these are decisions

that would need to be carefully considered as part of the

product development and testing sprints.

In any event, here we will pay attention to the average

number of rooms and the crime rate:

We select the variables of interest.X = boston_df[[’CRIM’, ’RM’]]

X.columns = [’Crime’, ’Rooms’]

The description of these two attributes is as follows:

We can see the descriptive

statistics for our variables of

interest.

> X.describe()

Crime Rooms

count 506.000000 506.000000

mean 3.613524 6.284634

std 8.601545 0.702617

min 0.006320 3.561000

25% 0.082045 5.885500

50% 0.256510 6.208500

75% 3.677083 6.623500

max 88.976200 8.780000

advanced data science and analytics with python 321

Figure 5.3: Boston house prices
versus average number of rooms
(top) and per capita crime rate
(bottom).

322 j. rogel-salazar

As we can see the minimum average number of rooms is

3.56 and the maximum is 8.78. The median is 6.20. In the

case of the per capita crime rate by town, the minimum

value is 0.006 and the maximum is 88.97, nonetheless the These figures will inform the

parameters that we will make

available to our users through the

app.

median is 0.25. We will use some of these values later to

define the ranges that will be provided to our users to find

price predictions. We can see the relationships of these two

features versus the house price values in Figure 5.3.

5.3.4 Modelling and Core ML: A Crucial Step

In the last section we have taken a look at the Boston

House Prices dataset, loaded it directly from Scikit-learn

and looked at some of the features of interest for our We will build a linear regression

model for this dataset.predictive model. It is now time to build the linear

regression model we talked about earlier on. Then we will

convert it into a .mlmodel to be used in an iOS app. As

usual, we are going to need some modules:

Importing modules is second

nature to us!

import pandas as pd

from sklearn import linear_model

from sklearn.model_selection\

import train_test_split

from sklearn import metrics

import numpy as np

import coremltools

We are familiar with the modules and methods mentioned

above. The newcomer in this case is coremltools which will

enable the conversion of our model to be used in iOS.

advanced data science and analytics with python 323

We have already loaded our data in the previous section and

created a subset of features including the crime rate score

and the number of rooms in the property. We also need to

have our target variable, i.e., the price of the property:

We need to define our target

variable.

y = boston.target

We know we need to separate the target variable from the

predictor variables so that the model can be built. Although

this dataset is not too big, we are going to follow best

practices and split the data into training and testing sets:

We split our data into training and

testing.

X_train, X_test, y_train, y_test=train_test_split(

X, y, test_size=0.2, random_state=7)

In this case we are reserving 20% of the dataset for testing

and the split is initialised with a random seed equal to 7.

Remember that the idea is to use the training set only in the

creation of the model. We then test with the remaining data

points.

Let us now create a self-contained function to build a

generalised linear model:

This function implements and fits

a linear regression model from

Scikit-learn.

def glm_boston(X, y):

print(’Implementing a linear regression’)

lm = linear_model.LinearRegression()

gml = lm.fit(X, y)

return gml

This creates an instance of the LinearRegression algorithm

in Scikit-learn and fits it with the data in X to predict the

target y. Let us use this function with our training data:

324 j. rogel-salazar

my_model = glm_boston(X_train, y_train)

The linear regression model we are implementing is of the

form:
Here, we refer to α as the intercept

and βi as the coefficients.
y = α + β1x1 + β2x2 + ǫ, (5.2)

and the fitting of the model we just performed will let us

extract the fitted parameters α and βi that will enable us to

make predictions. Let us see our coefficients:

We can see the estimated value

of our coefficients with the aid

of the properties .intercept and

.coeff_ of our model.

coefs = [my_model.intercept_, my_model.coef_]

We can check what the values are:

> print(’The intercept is {0}’.format(coefs[0]))

The intercept is -33.5555348465913.

> print(’The coefficients are {0}’.\

format(coefs[1]))

The coefficients are [-0.28631372 9.0980796].

The model is ready to be tested against the test data:

The .predict method of the

model lets us score unseen data

and make predictions.

y_pred = my_model.predict(X_test)

We can take a look at some metrics that let us evaluate our

model against the test data:

advanced data science and analytics with python 325

> print(’The mean absolute error is {0}’.format(\

metrics.mean_absolute_error(y_test, y_pred)))

The mean absolute error is 4.868982830602648.

> print(’The mean squared error is {0}’.format(\

metrics.mean_squared_error(y_test, y_pred)))

The mean squared error is 65.8994897857804.

Another important metric we would like to take a look at is

It is important to look at

evaluation metrics for our model.

the R-squared:

R-squared is a typical metric used

in linear regression.
> print(’The r-squared is {0}’.format(\

metrics.r2_score(y_test, y_pred)))

The r-squared is 0.18447543902501917.

We know that a value of 1 means that we have a perfect

prediction. In other words, the variance of the data will be Remember that our aim here is to

look at the deployment of a model.

You can spend more time finding

a better model than this good

enough one (for our purposes!)

explained fully by the model. In this case we have less than

20% of the variance explained... Not great, but not terribly

bad. Let us continue with this model. Remember that our

aim here is to look at the deployment of the model rather

than the accuracy we achieve with it.

Let us take a look at one of the test samples and its A dictionary will be used in

passing values to the Core ML

model!
prediction. We will set up a dictionary for the input features,

and see the prediction that the model has made for these

values:

326 j. rogel-salazar

sample = { ’crime’: X_test.iloc[0][’CRIM’],

’rooms’: X_test.iloc[0][’RM’] }

ypred_sample = y_pred[0]

In this case we are extracting the first set of values in the

Making a prediction with a pair of

values for our chosen attributes.

testing dataset. The prediction for this set of values is stored

in the first element of the array y_pred we calculated before:

> print(’A property with {0} is valued\

{1} thousand dollars’.format(\

sample, ypred_sample))

A property with {’crime’: 3.8497, ’rooms’: 6.395}

is valued 23.524462257014 thousand dollars

A property with an average number of rooms equal to 6.39

We can easily check the predicted

value for the chosen parameters.

in a location with a crime rate score of 3.84 is predicted to

be valued as 23.52 thousand dollars.

If we imagine that this is the model that we are interested

in deploying to our users, then we are ready for the big
In reality, you will probably have

to spend more time pondering

this.
moment: Converting our model to an .mlmodel object!!

Ready?

The named parameters in the

translation will be used in the app

implementation later on.

coreml_model = coremltools.converters.\

sklearn.convert(my_model,\

input_features=[’crime’, ’rooms’],

output_feature_names=’price’)

advanced data science and analytics with python 327

Since we are using Scikit-learn to develop our model, we

need to employ the sklearn.convert method of

coremltools.converters to convert the model into Core ML

format. Remember that currently you can also convert We are using sklearn.convert as

our model is originally developed

with Scikit-learn. Core ML

supports other frameworks

too.

models developed with Caffe, Keras, LIBSVM and XGBoost.

In the code above we are passing the name of our model

from Scikit-learn, together with the names we would like to

use for our input features, i.e., crime and rooms; we also

provide a name for the output, in this case price.

Now that we have a Core ML objects, we can edit some of

the metadata attached to it. This will make it easier to be

integrated to the rest of the deployment stack via XCode. Adding metadata to our Core ML

model is easy.For instance, information about the author, licensing and

others can be consumed by XCode UI. Also the input and

output descriptions can be used as comments in the code

generated by Xcode for the model consumer. Finally, we

can save the model. We will import the saved model in our

app later on, but for now we store it in a file with the name

PriceBoston.mlmodel.

In this case we are adding

metadata about the author, the

license and a description.

coreml_model.author = ’JRogel

coreml_model.license = ’BSD’

coreml_model.short_description = ’Predicts the

price of a house in the Boston area (1970s).’

coreml_model.save(’PriceBoston.mlmodel’)

We can use the support that Core ML provides for

visualising converted models, letting us see the building We can even visualise the model.

blocks of the model itself. We can do this with the help of

328 j. rogel-salazar

the .visualize_spec method, and an example of the result

can be seen in Figure 5.4.

coreml_model.visualize_spec()

Figure 5.4: Visualisation of
the Boston house price model
converted into Core ML format.Let us check that the converted model returns the same

predictions as the Scikit-learn model. All we need to do is

pass to the Core ML model a dictionary with the features

defined in the conversion, in this case crime and rooms. This

can be for instance the dictionary called sample we defined

above:

cml_pred = coreml_model.predict(sample)

Let us print the result:

We can check that the prediction

of the Core ML model matches

that of the original Scikit-learn

one.

> print(cml_pred)

{’price’: 23.524462257014}

advanced data science and analytics with python 329

and as we can see the result is a dictionary with price as a

key and its value matches the prediction obtained with our

linear model defined in Scikit-learn. We are ready for the

next step and that is to deploy our model in an app. We will

be using Xcode for that purpose.

5.3.5 Model Properties in Core ML

We have created our Core ML model out of a linear

regression algorithm developed with Scikit-learn. The

model predicts prices for properties in the Boston area

based on two predictors, namely crime rate and average

number of rooms. It is by no means the best model out

there and our aim is to explore the creation of a model (in

this case with Python) and convert it to a Core ML model

that can be deployed in an iOS app.

Before we move on to the development of the app, it would

be good to take a look at the properties of the converted

model. If we open the PriceBoston.mlmodel we saved in Opening it in Xcode of course!

the previous section, we will see the information shown in

Figure 5.5.

We can see the name of the model (PriceBoston) and the

fact that it is a “Pipeline Regressor”. We saw that the model We can see the metadata we added

to the model.can be given various metadata attributes such as Author,

Description, License, etc. We can also see the listing of the

Model Evaluation Parameters:

330 j. rogel-salazar

Figure 5.5: Properties of the
Boston Pricer Core ML model
created from Scikit-learn.Inputs

==

crime Double‘‘

rooms Double

Outputs

==

price Double

They take the form of Inputs (crime rate and number

Note that the inputs and outputs

are expected to be doubles.

of rooms) and Outputs (price). There is also an entry to Although there is a Model Class,

the target class is not present.describe the Model Class (PriceBoston) and you can see

that since the model is not part of a target, the target class is

not present. Once we integrate this model to an app, Xcode

will generate the appropriate code automatically.

advanced data science and analytics with python 331

The autogenerated Swift code will define the input variables

and feature names as well as a way to extract values out of Once we add our model to a

project, Xcode will autogenerate

the target class for us.
the input strings. It will set up the model output and other

components such as defining the class for model loading

and prediction. All this is taken care of by Xcode in one go,

making it very easy for us to use the model in our app. We

will start building that app in the next section.

5.4 Surprise and Delight: Build an iOS App

We have come a long way and we are now ready to

unleash our Boston pricer algorithm to the World! An

implementation in Scikit-learn will be useful for a number

of cases. In many others, we need to take into account the If only everyone could use Jupyter

notebooks, or, even better, Python

scripts in the terminal... not!
shocking fact that not everyone is interested in openning

a Jupyter Notebook to run a prediction. Instead, if we are

interested in deploying our algorithm to, say, non-technical

users, we will have to surprise and delight them with a

well-built app.

In this section we will cover the overall steps that will get

our algorithm encapsulated into a very simple iOS app. The

intention is to provide a flavour of the steps that need to be The app will be very simple, and

I hope you take some time to

improve it!
covered, and I would encourage you to spend more time

thinking about the functionality of the app, the interactions

that your users will need to go through, the flow of the

application, the look and feel, the design, logos and images.

And perhaps more importantly user testing and acceptance.

With that warning, let us get started.

332 j. rogel-salazar

5.4.1 New Project: Xcode

Let us start building an iOS app that will use the

model we created above, and enable our users to generate a

prediction for the price of a property based on input values An estimate? A valuation?

for the parameters used in the model, namely average

number of rooms and crime rate score. Our aim is to build

a simple interface where the user enters the values of the

chosen features and the predicted price is shown in the

device. Make sure you have access to Xcode and the Core

ML model we created earlier on. Ready?

Figure 5.6: Creating a new XCode
project for a Single View App.

Open up Xcode and select “Create a new Xcode project”.

That will open up a new dialogue box; from the menu at

the top make sure you select “iOS” and from the options

shown, please select the “Single View App” option and then We are building a “Single View

App”.click the “Next” button. See Figure 5.6 where the options

mentioned above are highlighted with a black square.

advanced data science and analytics with python 333

Figure 5.7: We need to provide
some metadata for the project we
are creating.The steps above will let us create an iOS app with a single

page. If you need more pages or views, this is still a good

place to start, as you can add further “View Controllers” You can add more views to your

project, if needed.and/or “Content Views” while you develop the app. In the

next dialogue box, shown in Figure 5.7, Xcode will be

asking for options to create the new project. Give your

project a name, something that makes it easier to elucidate

what your project is about. In this case, let us call the project

“BostonPricer”. You can also provide the name of a team

(team of developers contributing to your app for instance) as

well as an organisation name and identifier. In our case,

these are not that important and you can enter any suitable We are using SwiftUI to build our

user interface.values you desire. Please note that this becomes more

334 j. rogel-salazar

important in case you are planning to send your app for

approval to Apple. Make sure that you select “Swift” as the

programming language and “SwiftUI” as the User Interface.

We are leaving the option boxes for “Use Core Data”,

“Include Unit Tests” and “Include UI Tests” unticked.

Figure 5.8: The
LaunchScreen.storyboard element
is the main interface presented to
our users.

After clicking “Next”, Xcode will automatically open a new

editor and you will see some autogenerated code. Now, on How cool is that!

the left-hand side you will see the Project Navigator, look

for and click on the “LaunchScreen.storyboard” element as

shown in Figure 5.8. This is the main view that our users

will see when the application is launched. You can see on The Launch Screen is effectively a

splash screen that will be shown

when the app is started.
the right-hand side the shape of our target device, in this

case an iPhone 11 Pro Max, and you can change that to fit

your needs and those of your users.

advanced data science and analytics with python 335

Figure 5.9: Open the Library with
the plus icon, and the Object
Library with the icon that looks
like a square inside a circle.

Let us add a title and a couple of labels to our splash screen.

We will need three labels and an image view. To do that,

we will use the “Object Library”. In the current window

of Xcode, on the top-right corner you will see an icon with The Object Library lets us add

different objects to our screen to

build our app.
a plus sign (Figure 5.9); this opens up the Library which

will be shown in a separate window. Look for an icon that

looks like a little square inside a circle (Figure 5.9); this is

the “Object Library” icon. Select it and, at the bottom of the

area, you will see a search bar. There you will search for the

following objects:

• Label

• Image View

In this case we are building a very simple splash page and

all we will need is three labels and one image. You can drag Add three Labels and an Image

View to the device screen.each of the elements from the Object Library into the story

board. You can edit the text for the labels and the button

336 j. rogel-salazar

by double clicking on them. Change the name of the labels

to “Boston Pricer”, “Advanced Data Science and Analytics

with Python” and your name.

For the Image View, we will need to provide a picture. On

the left-hand side menu select the Assets.xcassets folder. Make sure you add a picture to

your project.You can drag and drop your chosen image there. You will

see something similar to what is shown in Figure 5.10.

Figure 5.10: Drag and drop your
image into the Assets.xcassets

folder.Go back to the Launch Screen storyboard and select the

Image View. From the menu on the top right-hand side

select the Attribute Inspector. Here you can use the Image This is the icon that looks like a

bookmark or an unfilled arrow

pointing down.
drop-down menu to select the picture you just added to

your project (see Figure 5.11).

advanced data science and analytics with python 337

Figure 5.11: Select your image in
the Attribute Inspector.

Figure 5.12: Auto layout errors.

You will notice that Xcode is giving some warnings about

the “Auto Layout” of the application—See Figure 5.12. This

is because we have not provided any constraints to the

objects in the screen. If you were to change the target device

(for example from the iPhone 11 Pro Max to an iPad Pro)

you will see that the location of the objects changes. Let us

first add some constraints to our image.

Figure 5.13: Let us centre the
image vertically and horizontally.

338 j. rogel-salazar

Select the Image Viewer and open the Align menu in the

bottom right-hand side of the canvas (see Figure 5.13).

Align the image vertically and horizontally in the container

by ticking the appropriate boxes and click the button to add

Align the picture horizontally and

vertically.

the two constraints.

We now need to ensure the picture maintains a reasonable

size and keeps its aspect ratio. Control-click and drag at

the same time inside the image. You will see a blue arrow

appearing as shown in the left-hand side of Figure 5.14.

We need to Control-click and drag

at the same time!

When you let go, a pop-up dialogue box will show (as in

the right-hand side of Figure 5.14). Select “Width” in the

pop-up dialogue box.

Figure 5.14: We can put
constraints on the height, width
and aspect ratio of our image.

A new constraint will appear in the menu on the right-hand

side of Xcode. There you can edit the constraint. In this case

we would like the image to be less or equal to 200 pixels,

You can manage the constraints

on the boxes that appear in the

right-hand side menu of the Xcode

window.as shown on the left-hand side of Figure 5.15. Control-click

and drag inside the image again. This time select “Aspect

advanced data science and analytics with python 339

Figure 5.15: We can edit the added
contraints for width and aspect
ratio.Ratio” and edit the constraint for the ratio to be 1:1, as

shown in the right-hand side of Figure 5.15.

Select the “Boston Pricer” label and click on the “Add

New Constraints” tool at the bottom of the canvas. In the

The one that looks like a square

between two vertical bars.

dialogue box click on the bottom bar to make the space to

the nearest neighbour to be 50 pixels—See the left-hand

side of Figure 5.16. Select now the “Boston Pricer” and

the Image and click on the Align tool bar. Align the two

objects horizontally by ticking in the box as shown on the

right-hand side of Figure 5.16.

We will do a similar thing to our other two labels. For the

“Advanced Data Science and Analytics with Python” label,

add new constraints to neighbours at the top, right and left

to be 20 pixels. Make sure that you have the “Constraints Adding constraints could be a

time-consuming task. All this

can be more easily managed with

SwiftUI as we shall see.

to margins” option ticked. For the label with your name,

add a new constraint to have 20 pixels to the top nearest

neighbour. Then align the centres of this label with the

centre of the image. These steps would have made the

warnings disappear.

340 j. rogel-salazar

Figure 5.16: We are now adding
constraints to one of the labels.

You can now marvel yourself and run your first iOS app.

All you need to do is click on the play button on the top

left-hand side of the Xcode window. This will launch an Clicking on the play button in

Xcode will launch an iPhone

simulator where our app will run!
iPhone simulator. First you will see the splash screen we

just created, and then, once the app starts you will see the

message “Hello World” in the best style of first programmes

in any programming language. The screens will look similar

to those in Figure 5.17.

As you can see, it is possible to create the look-and-feel of

the application using the so-called Interface Builder, where

we can drag and drop windows, buttons, labels, and more.

The caveat is that the functionality for each of these objects

needs to be developed independently using the Model-View-

Controller pattern.

Covering the Model-View-Controller pattern is out of the

scope of this book. However, we are going to use the

advanced data science and analytics with python 341

Figure 5.17: Running our app
up until this point will show the
splash page created, followed by
the “Hello Word” message shown
in all its glory.

SwiftUI which is a toolkit that enables us to build our apps

SwiftUI will actually make a lot of

us Pythonistas feel more at home.

in a declarative manner. We can also drag-and-drop

components and the framework supports previews of our

design without having to launch the simulator. Furthermore,

the declarative nature of the framework means that we do

let the operating system take care of the state of the objects

and even their location in the canvas.

We mentioned at the beginning of this section that some

autogenerated code is shown when creating our project.

It is this code the one that is responsible for displaying The autogenerated code we

mentioned before is responsible

for the “Hello World” message.
the “Hello World” message as seen on the right-hand side

of Figure 5.17. We can see this code by clicking on the

ContentView.Swift file on the Project Navigator on left-

342 j. rogel-salazar

hand side of our screen. You will see an editor similar to

the one shown in Figure 5.18. If you cannot see a preview of

the app, make sure you click on the Resume button on the

canvas view.

Figure 5.18: The autogenerated
code that prints “Hello World” to
the screen can be found in the
ContentView.Swift file.Let us change the text of the autogenerated code from

“Hello World” to “Boston Pricer”. We can also add some

formatting to the label by making the font title size and

centring the text:

Swiftstruct ContentView: View {

var body: some View {

Text(‘‘Boston Pricer’’).font(.largeTitle)

.multilineTextAlignment(.center) }

}

You can actually make the attribute modifications in the

preview. Command-click on the label and select “Show

SwiftUI Inspector”. There you can select the font and

advanced data science and analytics with python 343

alignment; the code in the editor will change automatically

(see Figure 5.19).

Figure 5.19: The attributes can be
changed in the preview.

We need to ensure that the different objects we add to our

interface are part of a navigation view. Also, since we are

letting the operating system organise these objects, we need

to ensure they are contained in either horizontal or vertical

stacks. For that, Swift lets us create VStack and HStack

objects, respectively. We can create a NavigationView with a

vertical stack, or VStack, containing our text label:

Swift

struct ContentView: View {

var body: some View {

NavigationView {

VStack {

Text(‘‘Boston Pricer’’)

.font(.largeTitle)

.multilineTextAlignment(.center) }

}

}

}

We will start placing a few other objects in our app. Some

of these objects will be used simply to display text (labels

and information), whereas others will be used to create

interactions. In particular, we are interested in letting our We are adding objects in a

horizontal stack, or HStack.users select input values and generate a prediction. In

this case we will start by adding a couple of labels in a

horizontal stack (HStack) and a button. After the line of

code starting with .multilineTextAlignment, type the

following code:

344 j. rogel-salazar

HStack {

Text(‘‘Crime Rate’’).padding(.trailing, 40)

Text(‘‘No. Rooms’’).padding(.leading, 40)

}

Spacer()

Button(action: {}) {

Text(‘‘Get Prediction’’)

}

Spacer()

Figure 5.20: The app layout is
automatically handled with
SwiftUI.

The horizontal stack creates two labels side-by-side, one

Swift

with the text “Crime Rate” and the other one with “No.

Rooms”. The button has the label “Get Prediction” and

thanks to the use of Spacer() the layout of the app is

handled with ease by the operating system and in any

screen size required. See Figure 5.20.

5.4.2 Push My Buttons: Adding Functionality

We now have a nice looking app. If we were to run the

simulator with the code we have, things will work. However,

nothing will happen. We need to add functionality to our

objects. In this case we only expect the user to tap on the We need to add functionality to

our app.button to trigger an action. This eventually will show the

prediction for the property price with the attributes selected.

First, let us make sure that we can add an action to the

button such that when it is tapped it displays a message.

advanced data science and analytics with python 345

Before we delve into the code, let us talk about states.

Consider a real object such as a lightswitch that is used to Bear with me... we will get there.

turn the lights on and off in a room. The switch may have

an indicator for on and off. The state of the room is such

that it is illuminated when the switch is in the on position,

and it is plunged into darkness when the switch is in the off The state of illumination in a room

is controlled by a variable state

that takes the values on or off.
position. The actions of the person in the room can change

the state of the room by changing the position of the switch.

Furthermore, the state of the room can also be changed by

other circumstances such as the time of day, the number of

people in the room, the temperature of the room, etc. We

refer to these variables as state variables and all possible

combinations of every possible value for the state variables

is referred to as the state space.

The state space of our current app is the equivalent of the Our app also has two states:

before and after pressing the

button.
on and off switch. There are two states:

1. The screen shown before the user presses the button. This

is shown in Figure 5.20.

2. A pop-up message after the user hits the button. When

the user dismisses the message, we revert back to state 1.

We need a state variable to keep track of the two states

mentioned above. In this case a Boolean will suffice. We A state variable is declared with

@State in Swift.declare a state variable in SwiftUI with @State. At the

top of the code in the content view, make the following

modifications:

346 j. rogel-salazar

struct ContentView: View {

@State var popUpVisible: Bool = false

var body: some View {

...

We are declaring a Boolean state variable called

Swift

popUpVisible and assign it the value of false. We can now

tell our app to change its state when the user presses the

button. To that end, let us make the following changes to

the button we implemented before:

Swift

An alert takes a title, a message

and an action for when the alert is

dismissed.

Button(action: {

self.popUpVisible = true

}) {

Text(‘‘Get Prediction’’)

}

.alert(isPresented: self.$popUpVisible) {

Alert(title: Text(‘‘Prediction’’),

message: Text(‘‘Prediction will be

shown here.’’),

dismissButton: .default(Text(‘‘Cool!’’)))

}

The first thing to note is the addition of a line in the action

for the button. In this case we assign the value of true when

the user presses the button. After the label of the button, we

are also adding a few lines of code. The alert() method of

the button will present a popup alert to the user. The title

is the bold title of the window; the message displayed is

handled by message and importantly the dismissButton is

advanced data science and analytics with python 347

a button that dismisses the window when the user is done.

The result of pressing the button can be seen in Figure 5.21.

Figure 5.21: The app state after
pressing the button.

5.4.3 Being Picky: The Picker View

We need to provide our users with an easy way to pick

the attributes of the property they need to value. Currently

our app contains three labels and one button. We need to

add a couple of pickers, one for the crime rate score and

another one for the number of rooms.

Let us start creating constants to hold the potential values

for the input variables. At the top of the ContentView struct

make the following changes:

Swift

The modifier let declares

constants in Swift.

struct ContentView: View {

let crimeData = Array(stride(from: 0.05,

through: 3.7, by: 0.1))

let roomData = Array(4...9)

@State var popUpVisible: Bool = false

...

These values are informed by the data exploration we

Crime from 0.05 to 3.65 in steps of

0.1, and Rooms from 4 to 9.

carried out in Section 5.3.3 earlier on. We are going to

use the arrays defined above to populate the values that

will be shown in our pickers. For this we need to define

a data source for each picker as well as a state variable.

Right below the definition of the constants crimeData and

roomData, let us add the following state variables:

348 j. rogel-salazar

@State var pickerCrime = 0

@State var pickerRoom = 0

Let us now add a couple of pickers. In the NavigationView,

Swift

between the “Boston Pricer” title and the button, remove the

HStack with the two labels and replace it with the following

VStack. The result will be similar to the one in Figure 5.22.

Swift
VStack {

Picker(selection: .constant(1),

label: Text(‘‘Crime’’)) {

Text(‘‘1’’).tag(1)

Text(‘‘2’’).tag(2)

}

.padding(.leading, 10)

Picker(selection: .constant(1),

label: Text(‘‘No. Rooms’’)) {

Text(‘‘1’’).tag(1)

Text(‘‘2’’).tag(2)

}

.padding(.leading, 10)

}

Figure 5.22: Adding a couple of
pickers to our app.

Currently the pickers have the values 1 and 2 but what we

really want is to show the values from the constants we

defined above. Let us look at the Crime Rate picker first:

advanced data science and analytics with python 349

Picker(selection: $pickerCrime,

label: Text(‘‘Crime’’)) {

ForEach(0..<crimeData.count) { ix in

Text(‘‘\(self.crimeData[ix],

specifier: ‘‘%.2f’’)’’).tag(ix)

}

}

Swift

Figure 5.23: The pickers are now
showing the correct values we
specified.

We are first specifying that the variable state pickerCrime is

used in this picker’s selection. The content of the picker is

then given by each of the indexed entries in the crimeData

array. We need to convert the doubles into text. We do

this by string interpolation by enclosing the name of the

variable between “\(...)". Think of this operation as a

substitution of the variable value. Finally, we specify that we

only require two decimal points with the formatter “%.2f”.

Let us now change the second picker to show valid values

for the number of rooms:

SwiftPicker(selection: $pickerRoom,

label: Text(‘‘No. Rooms’’)) {

ForEach(0..<roomData.count) { ix in

Text(‘‘\(self.roomData[ix]’’).tag(ix)

}

}

In this case we simply convert the integers into text, as there

is no need to specify a format for these strings. The result of

the code above can be seen in Figure 5.23.

350 j. rogel-salazar

We can check that the state variables are indeed capturing Let us check that we can capture

the current state of the app.the state of the app. Let us change the alert shown by the

button so that it shows the values picked by the user. At

this stage, we are not going to worry about formatting the

value of our double array crimeData. Modify the button

implementation as follows:

SwiftButton(action: {

self.popUpVisible = true

}) {

Text("Get Prediction")

}

.alert(isPresented: self.$popUpVisible) {

Alert(title: Text(‘‘Prediction’’),

message: Text(‘‘The values picked are\n

Crime Rate: \(crimeData[pickerCrime])\n

Rooms: \(roomData[pickerRoom])’’),

dismissButton: .default(Text(‘‘Cool!’’)))

}.padding()

Figure 5.24: We can see that the
app is capturing the correct state
for the pickers.

The result can be seen in Figure 5.24. It is now time to bring

the model into our app. Ready?

5.4.4 Model Behaviour: Core ML + SwiftUI

Look how far we have come. . . We started this chapter

looking at what Core ML does and how we can use the

tools provided by Apple to translate our Python models. In

this case we decided to use linear regression as our model,

and chose to use the Boston Price dataset in our exploration

for this implementation. We built our model using Python

advanced data science and analytics with python 351

and created our .mlmodel object. We have put together

an app that can be run in an iPhone and we are ready to

include our Core ML model in our Xcode project. The aim is

to use the inputs selected from our pickers and calculate a

prediction based on our model and display the result to our

Perhaps we may want to refer to

our prediction as a valuation?

users.

Figure 5.25: Adding a New Group
to our project.

Let us start by adding the .mlmodel we created earlier on so

that it is an available resource in our project. In the Xcode

project navigator, select the “BostonPricer” folder. At the

bottom of the window you will see a plus (+) sign, click on

it and select “New Group” (see Figure 5.25). This will create

a sub-folder within “BostonPricer”. Select the new folder

and hit the return key, this will let you rename the folder to

something more useful. In this case we are going to call this

folder “Resources”.

Figure 5.26: Adding resources to
our Xcode project.In your Mac, open Finder, and navigate to the location of

the PriceBoston.mlmodel we created earlier on. Drag the

352 j. rogel-salazar

file inside the “Resources” folder. This will open a dialogue

It is a good idea to keep our

Xcode project tidy with the help of

groups.

box asking for some options for adding this file to our

project (see Figure 5.26). Leave selected the “Create Folder

References”; make sure that you copy the items as needed.

Click on the “Finish” button and you will see the model

now being part of the project.

Go to the code in the Content View where we are going to

make a few changes. The first change is to tell our project

that we are going to need the powers of the Core ML

framework. At the top of the file, locate a line of code that

imports SwiftUI, right below it type the following:

Swiftimport CoreML

Inside the definition of the ContentView struct, let us define We need to instantiate a our

model, just like we have done in

Python.
a constant to reference the model. Look for the declarations

of the crimeData and roomData constants and next to them

type the following:

Swiftlet model = PriceBoston()

You will see that when you start typing the name of the

model, Xcode will suggest the right name as it knows about

As Xcode now knows about our

model, autocomplete is available

for it.
the existence of the model as part of its resources, neat!

We are now going to create a method that is able to read the

values selected by the user for the crime rate and number

of rooms pickers. These values will be used to calculate a

valuation. Our method will return a string containing the

predicted price. After the NavigationView code enter the

following:

advanced data science and analytics with python 353

var body: some View {

NavigationView{...}

}

func predictionMsg() -> String {

let crime = crimeData[pickerCrime]

let rooms = Double(roomData[pickerRoom])

guard let PriceBoston = try? model.prediction(

crime: crime, rooms: rooms) else {

fatalError(‘‘Unexpected runtime error.’’)

}

let price = String(format: ‘‘%.2f’’,

PriceBoston.price*1000)

let Msg = ‘‘Your property value is\n $\(price)’’

return Msg

}

Note that in the code above we have collapsed the

Swift

We are collapsing the

NavigationView view code to

be clear about where the changes

need to be placed.

The model has a .prediction

method to calculate our

prediction.

Finally, we format our result to be

ready for display.

NavigationView for ease of clarity. Our method is called

predictionMsg and it returns a string. First it reads the Notice that we have cast the rooms

constant as a double.values of the pickers and assigns them to two constants

crime and rooms. These are the input names expected by

our model, remember?

In Section 5.3.5 we saw that our PriceBoston class has a

prediction(crime:rooms:) method used to predict the

median value of a property from the model’s input values.

354 j. rogel-salazar

The result of this method is assigned in the code above to

a PriceBoston output instance. The price property of this That is the line starting with

guard.instance is used to get the prediction. We know that the

values are in thousands of dollars and that is why we are

multiplying the predicted value by 1000 before using it in a

string to be returned by the function.

Figure 5.27: The final app
producing predictions for our
users out of a linear regression
model first developed with
Python.

We can now run our app with the simulator and the result

will be a fully functional model, first developed in Python,

producing predictions in the hands of our users through an

iOS app. See Figure 5.27 to get an idea of what to expect,

and the final version of the app is available in GitHub11. 11 Rogel-Salazar, J
(2017). Boston Pricer.
https://github.com/rogelj/coreml_boston.
Accessed: 2019-10-23

There are many more things that we can do to improve

the app. For instance, we can test that the layout works for

https://github.com

advanced data science and analytics with python 355

a variety of screen sizes. Also, having a picker may be a

bit cumbersome for some of the inputs, perhaps a stepper

would be more appropriate. Another important aspect

in the experience that we want to give to our users is the

overall look-and-feel and usability for the app. This includes

the design of appropriate icons in various sizes. You can

now enroll a test device to run your application and use

the app as intended, in a mobile device. You can find more

information about that in the Apple Developers site12. 12 Apple Inc. (2019a).
Apple Developer.
https://developer.apple.com.
Accessed: 2019-10-23

5.5 Summary

As we said at the beginning of this chapter, we have

indeed covered a lot of ground. And yet, there are still quite

a few areas that we can explore in a deeper way. There are

also many more subjects we have not touched on at all. In

this last chapter we have looked into the perennial issue

of bringing our models, predictions and solutions to our

customers, users and stakeholders.

We provided a working definition for a data product as

one that meets the needs, wants and/or requirements of

our users through the use of data. We saw that it is of

particular importance to take into account any development

considerations around data. This may include things such

as its availability, processing, meaning and understanding,

to name a few. We also need to include in our development

cycles the usage of data science techniques, going beyond

data analysis.

https://developer.apple.com

356 j. rogel-salazar

We have also explored the complexity of data products:

Ranging from raw data and algorithms through to

automated decision making. The vast majority of our

discussions before this chapter have been centred around

the usage of data, and data science techniques, by Jackalope

data scientists. In this chapter we were actually interested in

bringing the fruit of our efforts to a non-technical audience

too. To that end we explored the requirements of a

multi-functional team including the need, not just for data

scientists, but also data architects, engineers, product

managers and subject matter experts.

As a way to bring our trained models to our potential users,

in this chapter we looked at building an application that can

be deployed in a mobile device. In this case we have chosen

to explore the Apple ecosystem including Xcode, Swift and

Core ML. We saw how Core ML offers us Pythonistas a

way to convert our trained models into a format that can be

integrated within an app, and be brought to the hands of

our users. Core ML tools enable us to translate a Scikit-learn

model into the .mlmodel format used by the iOS and MacOS

applications we intend to develop.

In this case we used a well-known dataset to make

predictions of the mean value of a property in the Boston

area (in the 1970s). In order to keep our discussion

manageable for the scope of the chapter, we used a linear

regression model, covering the different stages of the data

science workflow: From data understanding to exploration,

model training and testing and finally deployment.

advanced data science and analytics with python 357

Although the book has been primarily dedicated to the use

of Python in the practice of data science, in this chapter

we made reference to Swift. The intention was not to do

a comprehensive coverage of this programming language.

The hope, however, was that the snippets of code used are

easy enough to understand the gist of the language. We

covered the usage of the SwiftU framework, which gives us

the opportunity to add programmatically new elements to

our application, while letting the operating system handle

not only the location of the elements, but also track the state

space of the application.

We finished this chapter by incorporating our Core ML

model into the app, letting the user provide input values

for the features used in the model to make a prediction. As

we noted in the previous volume of this book, there is no

such a thing as a perfect model, only good enough ones, and thus

the model we present to our users may not be the one and

only model we develop, tweak, improve and supersede. We

can continue using anthropomorphic language to refer to

models that learn, see, understand and recognise, but we will

not be able to disguise the fact that mathematics, statistics

and software development sit at the heart of our efforts.

Enabling those efforts has been the intention of this, and its

companion, book.

Enjoy!

http://taylorandfrancis.com

A

Information Criteria

In our time series discussion in Chapter 1 we mentioned

our interest in determining the current value of a series

based on the past observations. We saw a few models that

can be used, and in many cases it involves how many lag

terms we need to include. The coefficients of these terms

provide us with information about the effects of the past in

predicting future values.

When adding more terms we are effectively gaining

information, but inevitably at the same time we make our

model more complex. In order to balance this dichotomy, in

many other cases we use regularisation. Various

information criteria help us with this regularisation task by

balancing the information gained by including additional

lag terms versus increasing the complexity of our model.

Some of the most frequently used information criteria

include the Akaike information criterion or AIC1, the 1 Akaike, H. (1969). Fitting
autoregressive models for
prediction. Annals of the Institute of
Statistical Mathematics 2(1), 243–247

Bayesian—sometimes referred to as Schwarz—information

360 j. rogel-salazar

criterion (BIC)2, or the Hannan and Quinn information 2 Schwarz, G. (1978). Estimating
the dimension of a model. The
Annals of Statistics 6(2), 461–464criterion (HQIC)3.
3 Hannan, E.J. and Quinn, B. G.
(1979). The determination of the
order of an autoregression. Journal
of the Royal Statistical Society, Series
B 41, 190–195

In general, the information criteria mentioned above have

the form:

ICk = log σ̂2
k +

kpn

n
, (A.1)

where σ̂k is the standard deviation to be estimated when k

parameters are to be determined, and n is the number of

observations. The first term in the expression above is the

goodness-of-fit, which is to be balanced with the second

term which effectively measures the complexity of the

model. For each of the information criteria, the coefficient in

this penalty term takes the form:

pn =























2, for AIC.

log n, for BIC.

2 log log n, for HQIC.

(A.2)

In each case, the aim is to find the model with the lowest

value of the selected information criterion.

B

Power Iteration

Let A be an n × n matrix. We start with an arbitrary initial

vector x(0) and we form the the vector sequence
{

x(k)
}∞

k=0
by defining:

x(k) = Ax(k−1), k = 1, 2, ... (B.1)

It is clear from the expression above that:

x(k) = Akx(0). (B.2)

The main idea behind power iteration is that x(k) will

converge to an eigenvector associated with the eigenvalue of

the largest magnitude.

In general, we are interested only in the direction, not

necessarily in the length, of the eigenvector. In practical

terms, it is best practice to include a normalisation step to

Equation (B.1). This leads us to the power iteration

algorithm as follows:

362 j. rogel-salazar

1. Start with a vector x(0) with ‖x(0)‖ = 1

2. k = 0

3. repeat

4. k = k + 1

5. y(k) = Ax(k−1)

6. µk = ‖y(k)‖

7. x(k) = y(k)/µk

8. until a convergence criterion is satisfied.

All the vectors x(k) generated by the algorithm have a norm

equal to one. In other words,
{

x(k)
}∞

k=0
is a sequence on the

unit sphere in n dimensions.

C

The Softmax Function and Its Derivative

We have encountered the softmax function in Chapter

4 and given its importance in the context of activation

functions for neural networks, we would like to cover some

information related to its characteristics, including its

derivative.

The softmax function is a generalisation of the sigmoid

function. It takes real values as input and maps them to a

probability distribution where entry is in the range (0, 1].

Furthermore, all the entries add up to 1. We know from

Chapter 4 that the function is given by:

softmax(zi) = σ(zi) =
exp(zi)

∑
N
k=1 exp(zk)

, for i = 1, . . . , k. (C.1)

We can see that σ(zi) is always positive and is bounded

between 0 and 1. If we were to evaluate the function for

the elements [0, 1, 2, 3, 4] we have that the function will

return the values [0.0116562, 0.0316849, 0.0861285, 0.2341216,

0.6364086] which add up to 1. In other words, with this

364 j. rogel-salazar

function we find a “soft” version of the maximum, where

the maximal input gets a proportionally large contribution

compared to the other elements, but all getting part of it.

The characteristics of the function are such that it is suitable

to be used for probabilistic interpretation. In cases where It is bounded between 0 and 1 and

the values add up to 1.we have multiple classes, we can use the function to assign

probabilities for an input to belong to each of the classes.

In the context of activation functions in neural networks, the

softmax function plays an important role, particularly in the

output layer and as such we require its derivative so that we

can perform backpropagation. The derivative of the softmax

function is therefore expressed as:

∂σ(zi)

∂zj
=

∂ ezi

∑
N
k=1 eak

∂zj
. (C.2)

We can apply the quotient rule to the expression above such

that g = ezi and h = ∑
N
k=1 ezk and thus:

∂σ(zi)

∂zj
=

∂ezi

∂zj
∑

N
k=1 ezk − ezi ∂

∂zj

(

∑
N
k=1 ezk

)

(

∑
N
k=1 ezk

)2

=

∂ezi

∂zj

∑
N
k=1 ezk

−
ezi ∑

N
k=1

∂
∂zj

ezk

(

∑
N
k=1 ezk

)2

= δij
ezi

∑
N
k=1 ezk

−
ezi

∑
N
k=1 ezk

ezj

∑
N
k=1 ezk

(C.3)

= σ(zi)
(

δij − σ(zj)
)

(C.4)

where δij is the Kronecker delta function.

advanced data science and analytics with python 365

C.1 Numerical Stability

When implementing computation for the softmax

function, we need to take into account the presence of

numerical instability for large input values. This is related

to the calculation of exponential functions involved in the

definition of softmax.

Normalisation of the inputs can be achieved with the

introduction of an arbitrary constant C as follows:

σ(zi) =
exp(zi)

∑
N
k=1 exp(zk)

=
C exp(zi)

∑
N
k=1 C exp(zk)

(C.5)

Using the properties of the exponential function, we are able

to write the expression above as:

σ(zi) =
exp(zi + log C)

∑
N
k=1 exp(zk + log C)

(C.6)

where log C is still an arbitrary constant we can choose. One

option is −max[z1, z2, . . . , zi] which has the effect of shifting

the inputs to a range close to zero.

http://taylorandfrancis.com

D

The Derivative of the Cross-Entropy Loss

Function

Given the cross-entropy loss function:

L = −∑
i

yi log ŷi = −∑ yi log σ(zi), (D.1)

where σ(zi) is the softmax function, we want to obtain the

derivative of with respect to the parameter zj.

∂L

∂zj
= −∑

i

yi
∂ log σ(zi)

∂zj
,

=

= −∑
i

yi
1

σ(zi)

∂σ(zi)

∂zj
. (D.2)

We need to calculate the derivative of the softmax function,

and information about this can be seen in Appendix C.

368 j. rogel-salazar

There are two cases, one for i = j and the other for i 6= j:

∂L

∂zj
= −yi(1 − σ(zi))− ∑

i 6=j

yi

−σ(zi)σ(zj)

σ(zi)
,

= −yi + yiσ(zi) + ∑
i 6=j

yiσ(zj),

= σ(zi)∑
i

yi − yi = σ(zi)− yi, (D.3)

as ∑i yi = 1.

Bibliography

ACE 2004 Multilingual Training Corpus.

https://catalog.ldc.upenn.edu/ LDC2005T09.

Address Before a Joint Session of the Congress. Barack

Obama. 44th President of the United States: 2009-2017.

https://www.presidency.ucsb.edu/ node/286218.

Beautiful Soup. https://www.crummy.com/

software/BeautifulSoup/.

Chardet. https://chardet.readthedocs.io.

Cursive Re. https://github.com/Bogdanp/ cursive_re.

re - Regular expression operations.

https://docs.python.org/3.6/ library/re.html.

Scrapy. https://scrapy.org.

spaCy. https://spacy.io.

Unicode 11.0. http://www.unicode.org/

versions/Unicode11.0.0/.

Abadi, M. et al. (2015). TensorFlow: Large-scale machine

learning on heterogeneous systems. http://tensorflow.org/.

Software available from tensorflow.org.

http://tensorflow.org
http://www.unicode.org
https://www.crummy.com
http://tensorflow.org
http://www.unicode.org
https://spacy.io
https://scrapy.org
https://docs.python.org
https://github.com
https://chardet.readthedocs.io
https://www.crummy.com
https://www.presidency.ucsb.edu
https://catalog.ldc.upenn.edu

370 j. rogel-salazar

Akaike, H. (1969). Fitting autoregressive models

for prediction. Annals of the Institute of Statistical

Mathematics 2(1), 243–247.

Al-Rfou, R. et al. (2016, May). Theano: A Python framework

for fast computation of mathematical expressions. arXiv

e-prints abs/1605.02688.

Apache Airflow (2014). Apache Airflow Documentation.

https://airflow.apache.org. Accessed: 2019-09-30.

Apple Inc. (2014). Swift programming language. https:

//swift.org.

Apple Inc. (2017a). Core ML. https://developer.apple.com/

documentation/coreml. Accessed: 2019-10-01.

Apple Inc. (2017b). Core ML tools.

https://github.com/apple/coremltools. Accessed: 2019-

10-01.

Apple Inc. (2019a). Apple Developer.

https://developer.apple.com. Accessed: 2019-10-23.

Apple Inc. (2019b). Core ML. https://developer.apple.com/

documentation/createml. Accessed: 2019-10-01.

Archer, S. (2017). Apple hits a record high after crushing

earnings (AAPL). http://markets.businessinsider.com

/news/stocks/apple-stock-price- record-high-after-

crushing-earnings -2017-8-100222647. Accessed: 2018-05-01.

Ball, W.W.R. and Coxeter, H.S.M. (1987). Mathematical

Recreations and Essays. Dover Recreational Math Series.

Dover Publications.

http://markets.businessinsider.com
http://markets.businessinsider.com
https://developer.apple.com
https://developer.apple.com
https://swift.org
https://swift.org
http://markets.businessinsider.com
https://developer.apple.com
https://developer.apple.com
https://github.com
https://developer.apple.com
https://airflow.apache.org

advanced data science and analytics with python 371

Bapat, R., R. Bapat, T. Raghavan, C. U. Press, T. S, G. Rota,

B. Doran, P. Flajolet, M. Ismail, T. Lam, et al. (1997).

Nonnegative Matrices and Applications. Encyclopedia of

Mathematics and its Applications. Cambridge University

Press.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent

Dirichlet Allocation. Journal of Machine Learning Research 3,

993–1022.

Box, G. and G. Jenkins (1976). Time series analysis: forecasting

and control. Holden-Day series in time series analysis and

digital processing. Holden-Day.

Butler, S. (2005). Erewhon; Or, Over the Range. Project

Gutenberg https://www.gutenberg.org/ebooks/1906.

Accessed: 2019-09-03.

Carroll, L. and J. Tenniel (1897). Through the Looking Glass:

And what Alice Found There. Altemus’ illustrated young

people’s library. Henry Altemus Company.

Chen, T. et al. (2014). CMXNet: A Flexible and Efficient

Machine Learning Library for Heterogeneous Distributed

Systems. arXiv preprint arXiv:1512.01274.

Cho, K., B. van Merrienboer, et al. (2014). Learning phrase

representations using RNN encoder-decoder for statistical

machine translation. CoRR abs/1406.1078.

Chollet, F. et al. (2015). Keras. https://github.com/

fchollet/keras.

Continuum Analytics (2014). Anaconda 2.1.0. https:

//store.continuum.io/cshop/anaconda/.

https://store.continuum.io
https://store.continuum.io
https://github.com
https://github.com
https://www.gutenberg.org

372 j. rogel-salazar

Euler, L. (1736). Solutio problematis ad geometriam situs

pertinentis. Comment. Acad. Sci. U. Petrop. 8, 128–140.

Fagles, R. (1997). The Odyssey. A Penguin Book. Penguin

Books.

Fortunato, S. (2010). Community detection in graphs. Phys.

Rep. 486(3-5), 75–174.

Gabasova, E. (2016). Star Wars social network.

https://doi.org/10.5281/ zenodo.1411479.

Girvan, M. and Newman, M.E.J (2002). Community structure

in social and biological networks. Proc. Natl. Acad. Sci.

USA 99, 7821–7826.

Github (2018). CNTK: The microsoft cognitive tool.

https://github.com/Microsoft/CNTK/. Accessed: 2018-

08-13.

Glenberg, A.M. (1997). What memory is for. Behav. Brain

Sci. 20, 1–55.

Grandjean, M. (2016). A social network analysis of Twitter:

Mapping the digital humanities community. Cogent Arts

and Humanities 3, 1–14.

Greff, K., Srivastava, R. K., Koutník, J., et al. (2017). LSTM:

A Search Space Odyssey. IEEE Trans. Neural Netw. and

Learning Sys. 28(10), 2222–2232.

Hannan, E.J. and Quinn, B. G. (1979). The determination of

the order of an autoregression. Journal of the Royal Statistical

Society, Series B 41, 190–195.

https://github.com
https://doi.org/10.5281/zenodo.1411479

advanced data science and analytics with python 373

Harrison, D. and D. Rubinfeld (1978). Hedonic prices

and the demand for clean air. J. Environ. Economics and

Management 5, 81–102.

Hinton, G. E. and R. Salakhutdinov (2006). Reducing the

dimensionality of data with neural networks. Science 313

5786, 504–7.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A

Fast Learning Algorithm for Deep Belief Nets. Neural

Computation 18, 1527–1554.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term

memory. Neural. Comput. 9(8), 1735–1780.

Ioffe, S. and C. Szegedy (2015). Batch normalization:

Accelerating deep network training by reducing internal

covariate shift. CoRR abs/1502.03167.

Jia, Y. et al. (2014). Caffe: Convolutional Architecture for Fast

Feature Embedding. arXiv preprint arXiv:1408.5093.

Karinthy, F. (1929). Chains in Everything is Different.

Online at http://bit.ly/karinthy_chains. Translated

from Hungarian and annotated by Adam Makkai. Edited

by E Jankó.

Karpathy, A. (2015). The Unreasonable

Effectiveness of Recurrent Neural Networks.

https://karpathy.github.io/2015/05/21/rnn-

effectiveness/. Accessed: 2019-09-09.

Kingma, D. P. and J. Ba (2014). Adam: A method for

stochastic optimization. arxXiv:1412.6980. Comment:

Published as a conference paper at the 3rd International

https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://bit.ly

374 j. rogel-salazar

Conference for Learning Representations, San Diego,

2015.

Krizhevsky, A. (2009). Learning multiple layers of features

from tiny images. Technical report.

LeCun, Y., Boser, B., Denker, J. S., et al. (1989).

Backpropagation applied to handwritten zip code

recognition. Neural Computation 1(4), 541–551.

Masters, D. and C. Luschi (2018). Revisiting Small Batch

Training for Deep Neural Networks. Computing Research

Repository http://arxiv.org/abs/1804.07612.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus

of the ideas immanent in nervous activity. Bull. of Math.

Biophysics 5(4), 115–133.

McKinney, W. (2012). Python for Data Analysis: Data Wrangling

with Pandas, NumPy, and IPython. O’Reilly Media.

McKinney, W. (2011). pandas: a foundational python

library for data analysis and statistics. Python for High

Performance and Scientific Computing: O’Reilly Media,

Inc.

Mikolov, T., I. Sutskever, et al. (2013). Distributed

Representations of Words and Phrases and Their

Compositionality. In Proceedings of the 26th International

Conference on Neural Information Processing Systems -

Volume 2, NIPS’13, USA, pp. 3111–3119. Curran Associates

Inc.

Milgram, S. (1967). The small world problem. Psych.

Today 1(1), 60–67.

http://arxiv.org/abs/1804.07612

advanced data science and analytics with python 375

Minsky, M., S. Papert, and L. Bottou (2017). Perceptrons: An

Introduction to Computational Geometry. The MIT Press. MIT

Press.

Moody, J. and White, D. (2003). Social cohesion and

embeddedness: A hierarchical conception of social groups.

Am. Soc. Rev. 68(1), 103–128.

Noichl, M. (2017). Relationships between Philosophers,

600 b.c - 160 b.c. https://homepage.univie.ac.at/

noichlm94/full/Greeks/index.html. Accessed: 2019-

02-18.

Papachristou, N. et al. (2019). Network Analysis of the

Multidimensional Symptom Experience of Oncology.

Scientific Reports 9(1), 2258.

Paszke, A. et al. (2017). Automatic differentiation in PyTorch.

In NIPS Autodiff Workshop.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, et al.

(2011). Scikit-learn: Machine learning in Python. Journal of

Machine Learning Research 12, 2825–2830.

Press, W., S. Teukolsky, W. Vetterling, and B. Flannery

(2007). Numerical Recipes 3rd Edition: The Art of Scientific

Computing. Cambridge University Press.

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000).

Inference of population structure using multilocus

genotype data. Genetics 155(2), 945–956.

Python Software Foundation (1995). Python reference

manual. http://www.python.org.

https://homepage.univie.ac.at
http://www.python.org
https://homepage.univie.ac.at

376 j. rogel-salazar

Řehůřek, R. and P. Sojka (2010, May). Software Framework

for Topic Modelling with Large Corpora. In Proceedings

of the LREC 2010 Workshop on New Challenges for NLP

Frameworks, Valletta, Malta, pp. 45–50. ELRA. http:

//is.muni.cz/publication/884893/en.

Reitz, K. Requests - http for humans. http://docs.python-

requests.org/en/master/.

Rogel-Salazar, J. (2016, Jan). Data Science Tweets.

https://doi.org/10.6084/ m9.figshare.2062551.v1.

Rogel-Salazar, J. (2018a, May). Apple Inc

Prices Apr 2017 - Apr 2018. https://doi.org

/10.6084/m9.figshare.6339830.v1.

Rogel-Salazar, J. (2018b, Jun). Bitcoin/USD

exchange rate Mar 31-Apr 3, 2016. https://doi.org

/10.6084/m9.figshare.6452831.v1.

Rogel-Salazar, J. (2018c, Sep). Iris Webpage. https://doi.org

/10.6084/m9.figshare.7053392.v4.

Rogel-Salazar, J. (2018d, Jul). Sunspots -

Monthly Activity since 1749. https://doi.org

/10.6084/m9.figshare.6728255.v1.

Rogel-Salazar, J. (2019a, Apr). Star Wars Network.

https://doi.org/10.6084/ m9.figshare.7993292.v1.

Rogel-Salazar, J. (2019b, Aug). Neural Network - Observation

dataset. https://doi.org/10.6084/ m9.figshare.9249074.v1.

Rogel-Salazar, J. (2019c, Apr). Zachary’s karate club.

https://doi.org/10.6084/ m9.figshare.7985174.v1.

https://doi.org/10.6084/m9.figshare.6728255.v1
https://doi.org/10.6084/m9.figshare.7053392.v4
https://doi.org/10.6084/m9.figshare.6452831.v1
https://doi.org/10.6084/m9.figshare.6339830.v1
https://doi.org/10.6084/m9.figshare.7985174.v1
https://doi.org/10.6084/m9.figshare.9249074.v1
https://doi.org/10.6084/m9.figshare.7993292.v1
https://doi.org/10.6084/m9.figshare.6728255.v1
https://doi.org/10.6084/m9.figshare.7053392.v4
https://doi.org/10.6084/m9.figshare.6452831.v1
https://doi.org/10.6084/m9.figshare.6339830.v1
https://doi.org/10.6084/m9.figshare.2062551.v1
http://docs.pythonrequests.org
http://docs.pythonrequests.org

advanced data science and analytics with python 377

Rogel-Salazar, J (2017). Boston Pricer.

https://github.com/rogelj/coreml_boston. Accessed:

2019-10-23.

Rogel-Salazar, J. (2017). Data Science and Analytics with Python.

Chapman & Hall/CRC Data Mining and Knowledge

Discovery Series. CRC Press.

Rosenblatt, F. (1962). Principles of neurodynamics: perceptrons

and the theory of brain mechanisms. Report (Cornell

Aeronautical Laboratory). Spartan Books.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986).

Learning representations by back-propagating errors.

Nature 323(6088), 533–536.

Russell, A. (2014). Open Standards and the Digital Age.

Cambridge Studies in the Emerg. Cambridge University

Press.

Schuster, A. (1906). II. On the periodicities of sunspots.

Philosophical Transactions of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences 206(402-

412), 69–100.

Schwarz, G. (1978). Estimating the dimension of a model. The

Annals of Statistics 6(2), 461–464.

Scientific Computing Tools for Python (2013). NumPy.

http://www.numpy.org.

Simas, T. et al. (2017). Food-Bridging: A new network

construction to unveil the principles of cooking. Frontiers

in ICT 4, 14.

http://www.numpy.org
https://github.com

378 j. rogel-salazar

Spotify (2014). Luigi. https://github.com/spotify/luigi.

Accessed: 2019-09-30.

Stellman, A. and J. Greene (2014). Learning Agile:

Understanding Scrum, XP, Lean, and Kanban. O’Reilly

Media.

Sutskever, I., J. Martens, G. Dahl, and G. Hinton (2013, 17–19

Jun). On the importance of initialization and momentum

in deep learning. In S. Dasgupta and D. McAllester (Eds.),

Proceedings of the 30th International Conference on Machine

Learning, Volume 28 of Proceedings of Machine Learning

Research, Atlanta, Georgia, USA, pp. 1139–1147. PMLR.

van Rossum, G. (2009). Text Vs. Data Instead of Unicode

Vs. 8-bit. https://docs.python.org/release/3.0.1/

whatsnew/3.0.html.

Vincent D Blondel, Guillaume, J.-L., Lambiotte, R., and

Lefebvre, E. (2008, Oct.). Fast unfolding of communities in

large networks. J. Stat. Mech-Theory E 2008(10), P10008.

Watts, D. and Strogatz, S. (1998). Collective dynamics of

small-world networks. Nature 393(1), 440–442.

Werbos, P. (1994). The Roots of Backpropagation: From Ordered

Derivatives to Neural Networks and Political Forecasting.

Adaptive and Cognitive Dynamic Systems: Signal

Processing, Learning, Communications and Control.

Wiley.

Zachary, W. W. (1977). An information flow model for

conflict and fission in small groups. J. Anthropol. Res. 33(4),

452–473.

https://docs.python.org
https://docs.python.org
https://github.com

Index

Star Wars, 139, 189

C-3PO, 58

R2-D2, 58

The Force, 189

Activation function

Hyperbolic tangent, 220

Rectified linear unit (ReLU),

222

Sigmoid, 220

Softmax, 222

Agile methodology, 307

Antimatter, 5

Apache Airflow, 309

API, 60, 311

Apple, 304

Button, 344

Core ML, 309, 310, 329, 350

Core ML Converter, 326

coremltools, 322

Create ML, 312

iPhone, 304, 334

Machine Learning, 350

Picker View, 347

Swift, 331

SwiftUI, 334, 341

State, 345

Xcode, 304, 311, 332

Apple Inc., 4

AQR Capital Management, 8

Artificial intelligence, 306

Artificial neural network, see

Neural network

ASCII, 88

Autocorrelation, 32

Autoregressive integrated

moving average (ARIMA),

52

Autoregressive model, 51

Autoregressive moving averages

(ARMA), 52

Bacon, Kevin, 138

Bayes’ theorem, 112

Beautiful Soup

find_all, 71

find, 71

text, 69

Comments, 67

Navigable strings, 67

Tags, 67

Beautiful soup, 64

Bialik, Mayim, 139

Bitcoin, 25, 46

Brain, 208

Axon, 209

Dendrite, 209

Neuron, 208

Cancer, 140

Carriage return, 88

Cerveza, 57

Chain rule, 211, 237

collections

Counter, 171

Colon notation, 11

Confusion matrix, 277

Constructed language

Dothraki, 58

Elvish, 58

Esperanto, 58

Klingon, 58

380 j. rogel-salazar

Convolution, 263

Corpus, 77

Correlation, 33

Correlogram, 51

Cross-entropy, 233, 247, 367

Cuisine, 140

Data, 4

Personality of the, 4

Data product, 304

Dataframe, 8

Deep learning, 207, 216, 254

Caffe, 255

CNTK, 255

Convolution, 263

Dense layer, 258

Dropout, 267

Feature map, 266

Keras, 255

MXNet, 255

Pooling, 267

PyTorch, 255

TensorFlow, 255

Theano, 255

Dendrogram, 184

Derivative, 235

Partial, 236

Dickey-Fuller test, 42

Dirichlet distribution, 111

Econometrics, 8

Edös, Paul, 139

Edge computing, 309

Euler, Leonhardt, 135

Fast Fourier transform, 40

Feature engineering, 230

FFT, see Fast Fourier transform

Financial time series, 3

Forecasting, 36

Generator, 70

Google, 148

GPU, 254

Gradient

Exploding, 286

Vanishing, 286

Gradient descent, 224, 226

Batch, 241

Mini-batch, 242

Stochastic, 241

Graph, 131, 141

Acyclic, 141

Adjacency list, 144, 161

Adjacency matrix, 143, 159

Arc, 132, 141

Betweenness, 146, 173

Chain, 141

Clique, 135, 183

Closed walk, 141

Closeness, 146, 175

Clustering coefficient, 151

Complete, 150

Cycle, 141

Degree centrality, 146, 168, 171

Diameter, 142

Directed, 133

Disconnected, 142

Edge, 132, 141

Edge betweenness, 153

Edge list, 144, 161

Ego network, 134

Eigenvector centrality, 147,

176

Equivalence relation, 145

Force-directed layout, 164

Geodesic path, 142

Giant component, 152

Hamiltonian cycle, 137

Homophily, 134

Node, 132

Centrality, 146

Degree, 145

Indegree, 145

Outdegree, 145

Reachable, 142

Strongly connected, 143

Weakly connected, 143

PageRank, 148, 178

Partition, 144

Path, 141

Semi-walk, 141

Shortest path, 139, 142

Small world, 137, 166

Bacon number, 138

Theory, 140

Trail, 141

Transitivity, 134

Travelling salesman, 136

Undirected, 133

Walk, 141

Weight, 143

Hamilton, William R., 137

Hawking, Stephen, 139

advanced data science and analytics with python 381

Hexadecimal, 92

Hierarchical clustering, 184

Homer, 256

Hooke’s law, 164

HTML, 60

Class, 73

Information criterion, 54, 359

Akaike (AIC), 54, 359

Bayesian (BIC), 54, 359

Hannan-Quinn (HQIC), 54,

359

Internet of Things, 309

Iris dataset, 3, 64

Jackalope data scientist, 2, 7, 56,

86, 129, 148, 234

Königsberg bridges puzzle, 135

Karaoke, 162

Karate, 162

Karinthy, Frigyes, 137

Kernel, 263

LDA

Perplexity, 115

Line feed, 88

List comprehension, 75

Log returns, 3

Loss function, 226, 232

Lucas, George, 189

Luigi, 309

Machine learning

Deployment, 303

Matrix

Power iteration, 149, 361

Sparse, 144

Melted dataset, 20

Milgram, Stanley, 137

Natural language, 57

Arabic, 77

Chinese, 77, 88, 96

Devanagari, 77

English, 58, 96

Greek, 88

Japanese, 58, 77, 88, 96

Nahuatl, 58

Processing, 58

Spanish, 58, 88, 96

Natural language processing

Bag of words, 114

Bigram, 114

Chunking, 106

LDA, 115

Lemma, 99

Lemmatisation, 99

N-gram, 114

Named entities, 105

Stemming, 99

Tokenisation, 96

Tweet, 100

Unigram, 114

Word tagging, 102

Network, see Graph

k-component, 153

Centralisation, 149

Clique, 150

Cluster, 150

Community detection, 152

Density, 150

Local clustering coefficient,

150

Louvain algorithm, 153

Degeneracy, 156

Resolution limit, 155

Modularity, 154

Properties, 149

NetworkX, 156

add_edge, 157

add_node, 157

add_nodes_from, 157

add_weighted_edges_from,

157

adj_matrix, 160

adjacency, 161

all_pairs_shortest_path_length,

184

average_clustering, 181

betweenness_centrality, 173

clustering, 180

contracted_nodes, 201

degree, 166, 168

degree_centrality, 171

draw_network, 158, 164

edges, 158

Eigenvector centrality, 176

girvan_newman, 184

Graph, 157

k_components, 182

Louvain algorithm, 187

nodes, 158

pagerank, 178

to_edgelist, 161

382 j. rogel-salazar

todense, 160

Neural network, 207, 214, 228

Activation function, 218

Architecture, 215

Backpropagation, 223

Backpropagation through

time, 284

Convolutional, 211, 263

Deep learning, 216, 254

Epoch, 242

Feedforward, 216

Gated recurrent unit, 289

Generative adversarial, 212

Hidden layer, 215

Input layer, 215

Layers, 215

Learning rate, 237

LSTM, 212, 281, 286, 290

Memory, 279

Nodes, 215

Output layer, 215

Overfitting, 217

Padding, 265

Recurrent, 212, 279

Truncated backpropagation

through time, 285

Underfitting, 217

Weight, 215

Neuroscience, 208

NLTK, 97

NP-complete, 152

numpy

randn, 19

Obama, Barack, 103

Online machine learning, 241

Open data, 60

Pain au chocolat, 57

Pandas, 8

fillna, 29

groupby, 12

resample, 13

to_datetime, 10

truncate, 12

Index

set, 10

sort, 10

Patterns

Regular expressions, 79

Perceptron, 209, 216

Periodogram analysis, 5

Philosopher, 140

POS tagging, 103

Python

chardet, 94

Iterable, 107

Random walk, 53

Regex, 77

Regular expressions, 77

compile, 81

match, 81

search, 81

Cursive Re, 87

re, 77

Reinforcement learning, 212

Sagan, Carl, 139

Scikit-learn

make_moons, 244

Scipy, 41, 184

Semi-structured data, 60

Sheep-Aircraft, 57

Simplex, 111

Six degrees of separation, 137

SNA, see Social network analysis

Social network analysis, 131, 132

Star Wars network, 189

Examples, 162

GML format, 163

Zachary’s Karate Club, 162

Softmax function, 363

Strings

decode, 91

encode, 91

Strogatz, Steve, 139

Sun

Auroras, 5

Sun activity, 5

Sunspots, 5

Supervised learning, 207

Support vector machine, 211

Swift, 304

TensorFlow, 256

Testing set, 115

The Odyssey, 256

Tick data, 25

Time series

Stationary, 39

Time series, 1, 2

Analysis, 1

Autocorrelation, 48

Autoregression, 48

advanced data science and analytics with python 383

Decomposition, 45

Examples, 4

Exponential smoothing, 37

Lagged values, 48

Manipulation, 18, 21

Modelling, 31

Moving averages, 36

Offset alias, 14

OHLC (open high low close),

22

Pandas, 7

Parsing, 25

Partial autocorrelation, 48

resample, 26

Seasonal stationary series., 39

Seasonality, 6, 39

Stationarity, 42

Stationary, 39

Structure, 6

Trend, 6

Topic modelling, 109

Training set, 115

Transfer learning, 212

Twitter, 100, 140

Tweet, 100

Type

bytearray, 89

bytes, 89

str, 89

Unicode, 89

Uniform distribution, 32

UTF, 89

UTF-16, 89

UTF-8, 89

Viking café, 78

Watts, Duncan, 139

Web scraping, 64

White noise, 32

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	1: No Time to Lose: Time Series Analysis
	1.1 Time Series
	1.2 One at a Time: Some Examples
	1.3 Bearing with Time: Pandas Series
	1.3.1 Pandas Time Series in Action
	1.3.2 Time Series Data Manipulation

	1.4 Modelling Time Series Data
	1.4.1 Regression. . . (Not) a Good Idea?
	1.4.2 Moving Averages and Exponential Smoothing
	1.4.3 Stationarity and Seasonality
	1.4.4 Determining Stationarity
	1.4.5 Autoregression to the Rescue

	1.5 Autoregressive Models
	1.6 Summary

	2: Speaking Naturally: Text and Natural Language Processing
	2.1 Pages and Pages: Accessing Data from the Web
	2.1.1 Beautiful Soup in Action

	2.2 Make Mine a Regular: Regular Expressions
	2.2.1 Regular Expression Patterns

	2.3 Processing Text with Unicode
	2.4 Tokenising Text
	2.5 Word Tagging
	2.6 What Are You Talking About?: Topic Modelling
	2.6.1 Latent Dirichlet Allocation
	2.6.2 LDA in Action

	2.7 Summary

	3: Getting Social: Graph Theory and Social Network Analysis
	3.1 Socialising Among Friends and Foes
	3.2 Let’s Make a Connection: Graphs and Networks
	3.2.1 Taking the Measure: Degree, Centrality and More
	3.2.2 Connecting the Dots: Network Properties

	3.3 Social Networks with Python: NetworkX
	3.3.1 NetworkX: A Quick Intro

	3.4 Social Network Analysis in Action
	3.4.1 Karate Kids: Conflict and Fission in a Network
	3.4.2 In a Galaxy Far, Far Away: Central Characters in a Network

	3.5 Summary

	4: Thinking Deeply: Neural Networks and Deep Learning
	4.1 A Trip Down Memory Lane
	4.2 No-Brainer: What Are Neural Networks?
	4.2.1 Neural Network Architecture: Layers and Nodes
	4.2.2 Firing Away: Neurons, Activate!
	4.2.3 Going Forwards and Backwards

	4.3 Neural Networks: From the Ground up
	4.3.1 Going Forwards
	4.3.2 Learning the Parameters
	4.3.3 Backpropagation and Gradient Descent
	4.3.4 Neural Network: A First Implementation

	4.4 Neural Networks and Deep Learning
	4.4.1 Convolutional Neural Networks
	4.4.2 Convolutional Neural Networks in Action
	4.4.3 Recurrent Neural Networks
	4.4.4 Long Short-Term Memory
	4.4.5 Long Short-Term Memory Networks in Action

	4.5 Summary

	5: Here Is One I Made Earlier: Machine Learning Deployment
	5.1 The Devil in the Detail: Data Products
	5.2 Apples and Snakes: Core ML + Python
	5.3 Machine Learning at the Core: Apps and ML
	5.3.1 Environment Creation
	5.3.2 Eeny, Meeny, Miny, Moe: Model Selection
	5.3.3 Location, Location, Location: Exploring the Data
	5.3.4 Modelling and Core ML: A Crucial Step
	5.3.5 Model Properties in Core ML

	5.4 Surprise and Delight: Build an iOS App
	5.4.1 New Project: Xcode
	5.4.2 Push My Buttons: Adding Functionality
	5.4.3 Being Picky: The Picker View
	5.4.4 Model Behaviour: Core ML + SwiftUI

	5.5 Summary

	A: Information Criteria
	B: Power Iteration
	C: The Softmax Function and Its Derivative
	C.1 Numerical Stability

	D: The Derivative of the Cross-Entropy Loss Function
	Bibliography
	Index

