ADVANCED
DATA SCIENCE
AND ANALYTICS
wiTH PYTHON

Advanced Data Science and
Analytics with Python

Chapman & Hall/CRC
Data Mining and Knowledge Series

Series Editor: Vipin Kumar

Text Mining and Visualization

Case Studies Using Open-Source Tools
Markus Hofmann and Andrew Chisholm

Graph-Based Social Media Analysis
loannis Pitas

Data Mining
A Tutorial-Based Primer, Second Edition

Richard]. Roiger

Data Mining with R
Learning with Case Studies, Second Edition

Luis Torgo

Social Networks with Rich Edge Semantics
Quan Zheng and David Skillicorn

Large-Scale Machine Learning in the Earth Sciences
Ashok N. Srivastava, Ramakrishna Nemani, and Karsten Steinhaeuser

Data Science and Analytics with Python
Jestis Rogel-Salazar

Feature Engineering for Machine Learning and Data Analytics

Guozhu Dong and Huan Liu

Exploratory Data Analysis Using R
Ronald K. Pearson

Human Capital Systems, Analytics, and Data Mining
Robert C. Hughes

Industrial Applications of Machine Learning
Pedro Larrariaga et al

Automated Data Analysis Using Excel
Second Edition
Brian D. Bissett

Advanced Data Science and Analytics with Python
Jestis Rogel-Salazar

For more information about this series please visit:

https://www.crcpress.com/Chapman--HallCRC-Data-Mining-and-Knowledge-Discovery-Series/book-
series/CHDAMINODIS

https://www.crcpress.com
https://www.crcpress.com

Advanced Data Science and
Analytics with Python

Jestis Rogel-Salazar

CRC Press
Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A CHAPMAN & HALL BOOK

First edition published 2020
by CRC Press
6000 Broken Sound Parkway N'W, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2020 Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and pub-
lisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not been
obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or here-
after invented, including photocopying, microfilming, and recording, or in any information storage or
retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com
or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-
750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

ISBN: 978-0-429-44661-0 (hbk)
ISBN: 978-1-138-31506-8 (pbk)
ISBN: 978-0-429-44664-1 (ebk)

mailto:mpkbookspermissions@tandf.co.uk
http://www.copyright.com

To A. |. Johnson

Then. Now. Always.

Taylor & Francis

Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Contents

No Time to Lose: Time Series Analysis

1.1
1.2
1.3
1.3.1
1.3.2
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.5
1.6

Time Series 2

One at a Time: Some Examples 4

Bearing with Time: Pandas Series 7
Pandas Time Series in Action 18
Time Series Data Manipulation 21

Modelling Time Series Data 31
Regression. .. (Not) a Good Idea? 34
Moving Averages and Exponential Smoothing
Stationarity and Seasonality 39
Determining Stationarity 42
Autoregression to the Rescue 48

Autoregressive Models 51

Summary 56

1

36

viii J. ROGEL-SALAZAR

Speaking Naturally: Text and Natural Language Processing
2.1 Pages and Pages: Accessing Data from the Web 59

2.1.1 Beautiful Soup in Action 64

2.2 Make Mine a Regular: Regular Expressions 77

2.2.1 Regular Expression Patterns 79

2.3 Processing Text with Unicode 88

2.4 Tokenising Text 96

2.5 Word Tagging 102

2.6 What Are You Talking About?: Topic Modelling 109

2.6.1 Latent Dirichlet Allocation 110
2.6.2 LDA in Action 115
2.7 Summary 129

Getting Social: Graph Theory and Social Network Analysis
3.1 Socialising Among Friends and Foes 132

3.2 Let’s Make a Connection: Graphs and Networks 140

3.2.1 Taking the Measure: Degree, Centrality and More 145

3.2.2 Connecting the Dots: Network Properties 149

3.3 Social Networks with Python: NetworkX 156

3.3.1 NetworkX: A Quick Intro 156

3.4 Social Network Analysis in Action 162

3.4.1 Karate Kids: Conflict and Fission in a Network 162

3.4.2 In a Galaxy Far, Far Away: Central Characters in a Network 189

57

131

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON iX

3.5 Summary 205

Thinking Deeply: Neural Networks and Deep Learning 207
4.1 A Trip Down Memory Lane 208

4.2 No-Brainer: What Are Neural Networks? 214

4.2.1 Neural Network Architecture: Layers and Nodes 215
4.2.2 Firing Away: Neurons, Activate! 218
4.2.3 Going Forwards and Backwards 223

4.3 Neural Networks: From the Ground up 227

4.3.1 Going Forwards 229

4.3.2 Learning the Parameters 232

4.3.3 Backpropagation and Gradient Descent 234
4.3.4 Neural Network: A First Implementation 243

4.4 Neural Networks and Deep Learning 254

4.4.1 Convolutional Neural Networks 263

4.4.2 Convolutional Neural Networks in Action 268
4.4.3 Recurrent Neural Networks 279

4.4.4 Long Short-Term Memory 286

4.4.5 Long Short-Term Memory Networks in Action 290

4.5 Summary 300

X J. ROGEL-SALAZAR

Here Is One I Made Earlier: Machine Learning Deployment 303
5.1 The Devil in the Detail: Data Products 304

5.2 Apples and Snakes: Core ML + Python 309

5.3 Machine Learning at the Core: Apps and ML 313

5.3.1 Environment Creation 314

5.3.2 Eeny, Meeny, Miny, Moe: Model Selection 315

5.3.3 Location, Location, Location: Exploring the Data 317
5.3.4 Modelling and Core ML: A Crucial Step 322

5.3.5 Model Properties in Core ML 329

5.4 Surprise and Delight: Build an iOS App 331

5.4.1 New Project: Xcode 332

5.4.2 Push My Buttons: Adding Functionality 344
5.4.3 Being Picky: The Picker View 347

5.4.4 Model Behaviour: Core ML + SwiftUl 350

5.5 Summary 355

Information Criteria 359

Power Iteration 361

The Softmax Function and Its Derivative 363
C.1 Numerical Stability 365

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON Xi

D The Derivative of the Cross-Entropy Loss Function 367

Bibliography 369

Index 379

Taylor & Francis

Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

List of Figures

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

A time series of the log returns for Apple Inc. for a year
since April 2017. 3

Solar activity from 1749 through 2013. 6

Closing prices for Apple Inc. for a year since April
2017. 7

Total of monthly visitors for the data entered

manually. 14

Open, high, low and close prices for the exchange rate
of bitcoin/USD. 31

White noise with zero mean, constant variance, and
zero correlation. 33

Closing prices for Apple Inc. for a year since April 2017
and a trend line provided by a multivariate

regression. 35

Moving averages (upper panel) and exponential
smoothing (lower panel) applied to the closing prices
for Apple Inc. 38

Analysis of the power spectrum of the sunspots data.
We can see that a maximum in activity occurs

approximately every 11 years. 42

Xiv J. ROGEL-SALAZAR

1.10 Sunspot activity and rolling statistics for the average
and the standard deviation. 43

1.11 Trend, seasonality and residual components for the
sunspot dataset. 46

1.12 Trend, seasonality and residual components for the
bitcoin dataset. 47

1.13 Autocorrelation and partial autocorrelation for the
sunspot dataset. 49

1.14 Autocorrelation and partial autocorrelation for the
bitcoin dataset. 50

1.15 Prediction for the sunspot activity using an ARMA(9,0)
model. 55

2.1 A very simple webpage. 63

2.2 A preview of the Iris HTML webpage. 64

2.3 A schematic representation of HTML as a tree. We are
only showing a few of the branches. 67

2.4 A chunked sentence with two named entities. 107

2.5 Top 10 named entities in the 2009 speech made by
Barack Obama before a Joint Session of the
Congress. 109

2.6 Graphical model representation of LDA. 114

3.1 An example of a social network with directed
edges. 133

3.2 The ego network for Terry G. Only the related nodes
are highlighted and the rest are dimmed down for
clarity. 134

3.3 Transitivity in a network. 135

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON XV

3.4 A schematic geographical representation of the seven
bridges of Konigsberg and a network highlighting the
connectivity of the four land masses in
question. 136

3.5 An example graph with seven nodes, and two
sub-graphs. 142

3.6 A simple graph depicting eight nodes and five
edges. 159

3.7 Zachary’s karate club: 34 individuals at the verge of a
club split. Edges correspond to friendship relationships
among club members. 165

3.8 Degree measure of the Zachary karate club network.
The size of the nodes denotes the degree and the color
corresponds to the groups formed after the split of the
club. The darker grey nodes are Mr. Hi’s group and the
light grey ones are John A’s supporters. 170

3.9 Frequencies of the degree centrality measure for the
karate club network. 172

3.10 Degree centrality measure of Zachary’s karate club. The
size of the nodes denotes the degree centrality. We can
see the importance of not only nodes 1, 34, 33, but also
2 and 3. 173

3.11 Betweenness of Zachary’s karate club network. The size
of the nodes denotes the betweenness. We can see the
importance of nodes 1, 34, as well as 33 and 3. Node 32

is a bridge in the network. 174

XVi J. ROGEL-SALAZAR

3.12 Closeness of Zachary’s karate club network. The size of
the nodes denotes the closeness. We can see the
importance of the nodes we already know about: 1, 34,
33 and 3. Node 9 is a close node in the network
too. 177

3.13 Eigenvector centrality of Zachary’s karate club network.
The size of the nodes denotes the eigenvector centrality
of the network. 178

3.14 PageRank of Zachary’s karate club network. The size of
the nodes denotes the PageRank scores of the
network. 180

3.15 Reduced network for Zachary’s karate club. We have
removed nodes 2, 3, 9 and 32 that are important for the
cohesion of the network. The size of the nodes denotes
the degree centrality of the nodes. 181

3.16 k-components of Zachary’s karate club network. 182

3.17 Some of the cliques in Zachary’s karate club
network. 183

3.18 Hierarchical clustering over Zachary’s karate club
network. 185

3.19 Communities discovered by the Girvan-Newman
algorithm on Zachary’s karate club network. Notice
that nodes 3 and 9 have been assigned to John A.’s
faction. 186

3.20 Communities discovered by the Louvain algorithm on
Zachary’s karate club network. We have four
communities denoted by different shades of
grey. 188

3.21 Star Wars network covering Episodes I-VII. Layout

inspired by the famous Death Star. 194

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON

3.22 Distribution of the degree centrality for the Star Wars
network. 195

3.23 Degree measure of the Star Wars network. The size of
the nodes denotes the degree centrality of the
node. 197

3.24 Eigenvector centrality for the Star Wars network. The
size of the nodes denotes the eigenvector centrality of
the node. 200

3.25 PageRange for the nodes in the Star Wars network. The
size of the nodes denotes the PageRank score for the
node. 200

3.26 Vader networks for the following centrality measures:
Degree centrality, eigenvector centrality, PageRank and
betweenness. 201

3.27 Star Wars sides (communities) obtained with the

application of the Girvan-Newman algorithms. 204

4.1 Neural network architecture with a single hidden
layer. 213

4.2 An artificial neural network takes up an input and
combines the contributions of the nodes to calculate an
output § with the aid of a nonlinear function with the
sum of its inputs. 214

4.3 Neural network architecture with a single hidden layer,
including bias. The inputs to a node (marked in gray)
are used in conjunction with the weights w; to calculate
the output with the help of the activation function
fO). 219

4.4 Zooming into one of the hidden nodes in our neural

network architecture. 220

xvii

Xviii J. ROGEL-SALAZAR

4.5 Some common activation functions, including sigmoid,
tanh and ReLU. 221

4.6 A plot of the softmax function. 222

4.7 Backward propagation of errors, or backpropagation,
enables the neural network to learn from its
mistakes. 225

4.8 General architecture of a neural network; we are
showing the labels of the different L layers in the
network. 232

4.9 The derivative of a function f indicates the rate of
change at a given point. This information lets us change
our parameters accordingly. 235

4.10 Observations corresponding to two classes, 0 and 1,
described by features x; and x;. We will use this data to
train a neural network. 244

4.11 Classification boundary obtained with a 3-node hidden
layer neural network. The discrimination is modelled
well with a cubic-like function. 250

4.12 Classification boundaries for a neural network with one
hidden layer comprising 1, 2, 3, 10, 30 and 50 hidden
nodes. 253

4.13 Classification boundary obtained with a sequential
model for a neural network implemented in
Keras. 261

4.14 An image of a letter] (on the left). After applying an
identity kernel the result is a scaled down version of the
image (on the right). 264

4.15 An image of a Jackalope icon (on the left). After
applying a sharpening filter, we obtain the image on the

right. 265

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON

4.16 Architecture of a convolutional neural network. 268

4.17 Example images for each of the ten classes in the
CIFAR-10 dataset. The pixelation is the result of the
images being 32 x 32. 269

4.18 A picture of a nice feline friend to test our
convolutional neural network. 278

4.19 A diagrammatic representation of the architecture of a
recurrent neural network. 281

4.20 The inner workings of a long short-term memory

neural network. 287

5.1 We follow this workflow to deploy our machine
learning models to our app. 314

5.2 A line of best bit for the observations y dependent of
features x7. 317

5.3 Boston house prices versus average number of rooms
(top) and per capita crime rate (bottom). 321

5.4 Visualisation of the Boston house price model
converted into Core ML format. 328

5.5 Properties of the Boston Pricer Core ML model created
from Scikit-learn. 330

5.6 Creating a new XCode project for a Single View
App. 332

5.7 We need to provide some metadata for the project we
are creating. 333

5.8 The LaunchScreen.storyboard element is the main
interface presented to our users. 334

5.9 Open the Library with the plus icon, and the Object
Library with the icon that looks like a square inside a

circle. 335

Xix

XX J. ROGEL-SALAZAR

5.10 Drag and drop your image into the Assets.xcassets
folder. 336

5.11 Select your image in the Attribute Inspector. 337

5.12 Auto layout errors. 337

5.13 Let us centre the image vertically and
horizontally. 337

5.14 We can put constraints on the height, width and aspect
ratio of our image. 338

5.15 We can edit the added contraints for width and aspect
ratio. 339

5.16 We are now adding constraints to one of the
labels. 340

5.17 Running our app up until this point will show the
splash page created, followed by the “Hello Word”
message shown in all its glory. 341

5.18 The autogenerated code that prints “Hello World” to
the screen can be found in the ContentView.Swift file.

342
5.19 The attributes can be changed in the preview. 343
5.20 The app layout is automatically handled with SwiftUL
344

5.21 The app state after pressing the button. 347

5.22 Adding a couple of pickers to our app. 348

5.23 The pickers are now showing the correct values we
specified. 349

5.24 We can see that the app is capturing the correct state for
the pickers. 350

5.25 Adding a New Group to our project. 351

5.26 Adding resources to our Xcode project. 351

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON XXi

5.27 The final app producing predictions for our users out of
a linear regression model first developed with

Python. 354

Taylor & Francis

Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

List of Tables

1.1

1.2

1.3
1.4

2.1

2.2

4.1

Offset aliases used by Pandas to represent common
time series frequencies. 15

Descriptive statistics for the data entered manually. We
are not including the count in this table. 16

Some format directives for the strftime method. 17
Parameters specifying the decay applied to an

exponential smoothing calculation with ewm. 38

Common HTML tags. 61
Regular expression patterns. We use ellipses (.. .) to

denote sequences of characters. 8o

Character rankings for the most central characters in
the Star Wars saga given by various centrality

measures. 202

Capabilities of neural networks with a different number

of hidden layers. 217

Models and frameworks supported by Core
ML. 312

Taylor & Francis

Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Preface

WRITING A BOOK Is AN exhilarating experience, if at times
a bit hard and maddening. This companion to Data Science
and Analytics with Python® is the result of arguments with
myself about writing something to cover a few of the areas
that were not included in that first volume, largely due to
space/time constraints. Like the previous book, this one
exists thanks to the discussions, stand-ups, brainstorms and
eventual implementations of algorithms and data science
projects carried out with many colleagues and friends. The
satisfaction of seeing happy users/customers with products
they can rely on is, and will continue to be, a motivation for

me.

The subjects discussed in this book are complementary and
a follow-up to the ones covered in Volume 1. The intended
audience for this book is still composed of data analysts and
early-career data scientists with some experience in
programming and with a background in statistical
modelling. In this case, however, the expectation is that they
have already covered some areas of machine learning and

data analytics. Although I will refer to the previous book in

* Rogel-Salazar,]. (2017). Data
Science and Analytics with Python.
Chapman & Hall/CRC Data
Mining and Knowledge Discovery
Series. CRC Press

The book and its companion are
a good reference for seasoned

practitioners too.

XXVi J. ROGEL-SALAZAR

parts where some knowledge is assumed, the book is
written to be read independently from Volume 1. As the
title suggests, this book continues to use Python? as a tool to
train, test and implement machine learning models and
algorithms. Nonetheless, Python does not live in isolation,
and in the last chapter of this book we touch upon the usage
of Swift3 as a programming language to help us deploy our

machine learning models.

Python continues to be, in my view, a very useful tool.

The number of modules, packages and contributions that
Pythonistas have made to the rest of the community make
it a worthwhile programming language to learn. It is no
surprise that the number of Python users continues to grow.
Similarly, the ecosystem of the language is also evolving:
From the efforts to bring Python 3.x to be the version of
choice, through to the development of the computational
environment that is the Jupyter Notebook and its evolution,

the JupyterLab.

For those reasons, we will continue using some excellent
libraries, such as Scikit-learn4, Pandas5, Nurnpy6 and others.
After all, we have seen Nobel prize winning research being
supported by Python, as have been a number of commercial
enterprises, including consultancies, startups and
established companies. The decision to use Python for this
second volume is therefore not just one of convenience and
continuity, but a conscious adoption that I hope will support

you too.

2 Python Software Foundation
(1995). Python reference manual.
http://www.python.org

3 Apple Inc. (2014). Swift
programming language.
https://swift.org

Visit https://jupyterlab.
readthedocs.io for further

information.

4 Pedregosa, F., G. Varoquaux,
A. Gramfort, V. Michel, et al.
(2011). Scikit-learn: Machine
learning in Python. Journal of
Machine Learning Research 12,
2825-2830

5 McKinney, W. (2012). Python
for Data Analysis: Data Wrangling
with Pandas, NumPy, and IPython.
O'Reilly Media

¢ Scientific Computing Tools

for Python (2013). NumPy.
http://www.numpy.org

https://jupyterlab.readthedocs.io
http://www.numpy.org
https://jupyterlab.readthedocs.io
https://swift.org
http://www.python.org

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON XXVii

As I mentioned above, the book covers aspects that were
necessarily left out in the previous volume; however, the
readers in mind are still technical people interested in
moving into the data science and analytics world. I have
tried to keep the same tone as in the first book, peppering
the pages with some bits and bobs of popular culture,
science fiction and indeed Monty Python puns. The aim
is still to focus on showing the concepts and ideas behind
popular algorithms and their use. As before, we are not
delving, in general, into exhaustive implementations from

scratch, and instead relying on existing modules.

The examples contained here have been tested in Python 3.7
under MacOS, Linux and Windows 10. We do recommend
that you move on from Python 2. For reference, the versions

of some of the packages used in the book are as follows:

Python - 3.5.2 Pandas - 0.25
NumPy - 1.17.2 Scikit-learn - 0.21
SciPy - 1.3.1 StatsModels - 0.10
BeautifulSoup - 4.8.1 NLTK - 3.4.5
NetworkX - 2.4 Keras - 2.2.4

TensorFlow - 1.14.0

As before, I am using the Anaconda Python distribution”
provided by Continuum Analytics. Remember that there are

other ways of obtaining Python as well as other versions of

I sincerely hope the most obscure
ones do make you revisit their

excellent work.

Maintenance for Python 2 has

stopped as of January 2020.

7 Continuum Analytics (2014).
Anaconda 2.1.0. https://store.
continuum.io/cshop/anaconda/

https://store.continuum.io
https://store.continuum.io

XXviii J. ROGEL-SALAZAR

the software: For instance, directly from the Python
Software Foundation, as well as distributions from
Enthought Canopy, or from package managers such as
Homebrew. In Chapters 4 and 5, we create conda
environments to install and maintain software relevant to
the discussions for those chapters, and you are more than

welcome to use other virtual environment maintainers too.

We show computer code by enclosing it in a box as follows:

> 1+ 1 # Example of computer code

We use a diple (>) to denote the command line terminal
prompt shown in the Python shell. Keeping to the look
and feel of the previous book, we use margin notes, such
as the one that appears to the right of this paragraph, to
highlight certain areas or commands, as well as to provide

some useful comments and remarks.

As mentioned before, the book can be read independently
from the previous volume, and indeed each chapter is as
self-contained as possible. I would also like to remind you
that writing code is not very dissimilar to writing poetry.
If I asked that each of us write a poem about the beauty of
a Jackalope, we would all come up with something. Some

would write odes to Jackalopes that would be remembered

by generations to come; some of us would complete the task

with a couple of rthymes. In that way, the code presented

here may not be award winning poetry, but the aim, I hope,

Python Software Foundation
https://www.python.org

Enthought Canopy https://www.
enthought.com/products/epd/

Homebrew http://brew.sh

This is an example of the margin

notes used throughout this book.

I hope Sor Juana would forgive

my comparison.

https://www.enthought.com
http://brew.sh
https://www.enthought.com
https://www.python.org

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON XXiX

will be met. I would welcome to hear about your poems. Do

get in touch!

We start in Chapter 1 with a discussion about time series Time series data and analysis is
data. We see how Pandas has us covered to deal with the covered in Chapter 1.
fiendish matter of date data types. We learn how to use

time series data similar to that found in stock markets

and see how Pandas lets us carry out resampling, slicing

and dicing, filtering, aggregating and plotting this kind

of data. In terms of modelling, in this chapter we see how

moving averages and exponential smoothing let us get

a first approach at forecasting future values of the series

based on previous observations. We look at autoregression

and see how it can be used to model time series.

In Chapter 2, we take a look at processing text data Natural language processing is
containing natural language. We look at how we can obtain covered in Chapter 2.
data from the web and scrape data that otherwise would be

out of reach to us. We take a look at the use of regular

expressions to capture specific patterns in a piece of text

and learn how to deal with Unicode. Looking at text data in

this way leads us to the analysis of language, culminating

with topic modelling as an unsupervised learning task to

identify the possible subjects or topics that are addressed in

a set of documents.

In Chapter 3, we look into some fundamental concepts used Chapter 3 covers the use of graphs
in the analysis of networks, whether social or otherwise. and network analysis, a topic
that will inevitably make us more

We look at graph theory as a way to discover relationships social.
encoded in networks such as small-world ones. We have

a chance to talk about measures such as degree centrality,

XXX J. ROGEL-SALAZAR

closeness, betweenness, and others. We even do this with

characters from a galaxy far, far away.

Chapter 4 is probably the deepest chapter of all, pun
definitely intended. It is here where we turn our attention to
the “unreasonable effectiveness” of neural networks. We
look at the general architecture of a neural network and
build our own from scratch. Starting with feedforward
networks, we move on to understand the famous
backpropagation algorithm. We get a chance to look at the
effect of the number of layers as well as the number of
nodes in each of them. We then move on to the
implementation of more complex, deeper architectures, such

as convolutional and recurrent neural networks.

Finally, in Chapter 5, we look at the perennial issue of
bringing our models, predictions and solutions to our
customers, users and stakeholders. Data products are the
focus of our discussion, and we see how the availability,
processing, meaning and understanding of data should be
at the heart of our efforts. We then look at the possibility of
bringing our models to the hands of our users via the
implementation of a model inside a mobile device
application in an Apple device such as an iPhone via Core
ML.

Remember that there is no such thing as a perfect model, only
good enough ones. The techniques presented in this book,
and the companion volume, are not the end of the story,
they are the beginning. The data that you have to deal

with will guide your story. Do not let the anthropomorphic

Chapter 4 looks at neural

networks and deep learning.

Chapter 5 looks at the deployment

of machine learning models.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON XXXi

language of machine learning fool you. Models that learn,
see, understand and recognise are as good as the data used to
build them, and as blind as the human making decisions
based on them. Use your Jackalope data science skills to

inform your work.

As I said before, this book is the product of many
interactions over many moons. I am indebted to many
people that have directly and indirectly influenced the
words you have before you. Any errors, omissions or
simplifications are mine. As always, I am grateful to my
family and friends for putting up with me when I excuse
myself with the old phrase:“I have to do some book... I am
behind”. Thank you for putting up with another small project

from this crazy physicist!

London, UK Dr Jesiis Rogel-Salazar

March 2020

You know who you are!

Do some work on the book of

course...

Taylor & Francis

Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Reader’s Guide

THIS BOOK IS INTENDED TO be a companion to any
Jackalope data scientist that is interested in continuing the

journey following the subjects covered in Data Science and

Analytics with Pythons. The material covered here is fairly 8 Rogel-Salazar, J. (2017). Data
Science and Analytics with Python.
independent from the book mentioned above though. Chapman & Ha‘lﬁ /CRC Datya

Mining and Knowledge Discovery
The chapters in this book can be read on their own and in Series. CRC Press
any order you desire. If you require some direction though,
here is a guide that may help in reading and/or consulting

the book:

* Managers and readers curious about Data Science:

— Take a look at the discussion about data products in
Chapter 5. This will give you some perspective of
the areas that your Jackalope data scientists need to

consider in their day-to-day work.

— I'recommend you also take a look at Chapters 1 and 3

of the companion book mentioned above.

- Make sure you understand those chapters inside-
out; they will help you understand your rangale of

Jackalope data scientists.

XXXiV J. ROGEL-SALAZAR

¢ Beginners:

- Start with Chapters 2 and 3 of the companion book.
They will give you a solid background to tackle the
rest of this book.

— Chapter 1 of this book provides a good way to

continue learning about the capabilities of Pandas.

— Chapter 2 of this book on natural language processing
will give you a balanced combination of powerful tools,

with an easy entry level.

e Seasoned readers and those who have covered the first
volume of this series may find it easier to navigate the

book by themes or subjects:

— Time Series Data is covered in Chapter 1, including:

+ Handling of date data
+ Time series modelling
+ Moving averages
+ Seasonality
+ Autoregression
— Natural Language Processing is covered in Chapter 2,
including:

+ Text data analysis

*

Web and HTML scraping

*

Regular expressions

*

Unicode encoding

*

Text tokenisation and word tagging

*

Topic modelling

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON XXXV

— Network Analysis is discussed in Chapter 3,
including:
+ Graph theory
+ Centrality measures
+ Community detection and clustering
* Network representation
— Neural networks and Deep Learning is addressed in
Chapter 4, where we look at:
* Neural network architecture
+ Perceptron
* Activation functions
* Feedforward networks
+ Backpropagation
+ Deep learning
+ Convolutional neural networks
* Recurrent neural networks
+ LSTM
— Model Deployment and iOS App Creation is covered
in Chapter 5, including:
+ Data products
+ Agile methodology
+ App design
+ Swift programming language

+ App deployment

Taylor & Francis

Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

About the Author

DR JEsUs ROGEL-SALAZAR 1Is a lead data scientist with
experience in the field working for companies such as
AKQA, IBM Data Science Studio, Dow Jones, Barclays and
Tympa Health Technologies. He is a visiting researcher at
the Department of Physics at Imperial College London,
UK and a member of the School of Physics, Astronomy
and Mathematics at the University of Hertfordshire, UK.
He obtained his doctorate in Physics at Imperial College
London for work on quantum atom optics and ultra-cold

matter.

He has held a position as senior lecturer in mathematics,

as well as a consultant and data scientist, for a number of
years in a variety of industries, including science, finance,
marketing, people analytics and health, among others. He
is the author of Data Science and Analytics with Python and
Essential MATLAB® and Octave, both also published by CRC
Press. His interests include mathematical modelling, data
science and optimisation in a wide range of applications,
including optics, quantum mechanics, data journalism,

finance and health.

Taylor & Francis

Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Other Books by the Same Author

¢ Data Science and Analytics with Python
CRC Press, 2018, ISBN 978-1-138-04317-6 (hardback)
978-1-4987-4209-2 (paperback)

Data Science and Analytics with Python is designed for
practitioners in data science and data analytics in both
academic and business environments. The aim is to
present the reader with the main concepts used in data
science using tools developed in Python. The book
discusses what data science and analytics are, from the

point of view of the process and results obtained.

e Essential MATLAB® and Octave
CRC Press, 2014, ISBN 978-1-138-41311-5 (hardback)
978-1-4822-3463-3 (paperback)

Widely used by scientists and engineers, well-established
MATLAB® and open-source Octave provide excellent
capabilities for data analysis, visualisation, and more.

By means of straightforward explanations and examples
from different areas in mathematics, engineering, finance,
and physics, the book explains how MATLAB and Octave

are powerful tools applicable to a variety of problems.

Taylor & Francis

Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

1

No Time to Lose: Time Series Analysis

HAVE YOU EVER WONDERED WHAT the weather, financial
prices, home energy usage, and your weight all have in
common? Well, appart from the obvious, the data to analyse
these phenomena can be collected at regular intervals over
time. Common sense, right? Well, there is no time to lose;
let us take a deeper look into this exciting kind of data. Are

you ready?

A time series is defined as a sequence of data reading in
successive order and can be taken on any variable that
changes over time. So, if a time series is a set of data
collected over time, then a lot of things, not just our weight
or the weather, would be classed as time series, and perhaps
that is true. There are, obviously and quite literally, millions
of data points that can be collected over time. However, time

series analysis is not necessarily immediately employed.

Time series analysis encapsulates the methods used to

understand the sequence of data points mentioned above

Not obvious? Oh... well, read on!

Or is it Toulouse, like “Toulouse”

in France?

A lot of data is collected over time,
but that does not make the data

set a time series.

2 J. ROGEL-SALAZAR

and extract useful information from it. A main goal is that
of forecasting successive future values of the series. In this
chapter we will cover some of these methods. Let us take a
look.

1.1 Time Series

KNOWING HOW TO MODEL TIME series is surely an
important tool in our Jackalope data scientist toolbox.
Jackalopes? Yes! Long story... You can get further
information in Chapter 1 of Data Science and Analytics with
Python.*. But I digress, the key point about time series data
is that the ordering of the data points in time matters. For
many datasets it is not important in which order the data
are obtained or listed. One order is as good as another, and
although the ordering may tell us something about the

dataset, it is not an inherent attribute of the set.

However, for time series data the ordering is absolutely
crucial. The order imposes a certain structure on the data,
which in turn is of relevance to the underlying phenomenon
studied. So, what is different about time series? Well, Time!
Furthermore, we will see later on in this chapter that in
some cases there are situations where future observations
are influenced by past data points. All in all, this is not a
surprising statement; we are well acquainted with causality

relationships.

Let us have a look at an example of a time series. In Figure

1.1 we can see a financial time series corresponding to the

* Rogel-Salazar, J. (2017). Data
Science and Analytics with Python.
Chapman & Hall/CRC Data
Mining and Knowledge Discovery
Series. CRC Press

See for instance the datasets
analysed in the book mentioned

above.

What is different about time

series? —Time!

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 3

0.024

log Returns
o
o
o

-0.021
—0.041
P ol WX A o> o> P
% 1 - A- & & &
e e o> e e e e
Date

Figure 1.1: A time series of the log
returns for Apple Inc. for a year

log returns of Apple for a year starting in April 2017. The since April 2017.

log returns are used to determine the proportional amount
you might get on a given day compared to the previous
one. With that description in mind, we can see how we are

The log return is given by
relating the value on day 7 to the one on day n — 1. log (EV,), where FV is the future

value and PV is the past value.
In that way, a Jackalope data scientist working in finance
may be able to look at the sequence provided by the time
series to determine a model that can predict what the next
value will be. The same train of thought will be applicable And hop all the way to the bank...
to a variety of other human endeavours, from agriculture to

climate change, and from geology to solar dynamics.

In contrast, in many other cases the implicit assumption we
may be able to make is that the observations we take are not
a sequence and that the values obtained are independent
from each other. Let us consider the Iris dataset that we

have used in Chapter 3 of Data Science and Analytics with

4 J. ROGEL-SALAZAR

Python?. The dataset records measurements of three species
of iris flowers in centimetres, including sepal length, sepal
width, petal length and petal width. In collecting the
information, there is no reason to believe that the fact the
current iris specimen we measure has a petal length of, say,

6.1 cm tells us anything about the next specimen.

In a time series the opposite is true, i.e., whatever happens
at time t has information about what will happen at t + 1. In
that sense, our observations of the phenomenon at hand are
at the same time both outcomes and predictors: Outcomes
of the previous time step, and predictors of the next one. I
know what you are thinking—cool!/— and now how do we

deal with that situation??

You will be happy (although not surprised perhaps) that
there is an answer: There are various ways to deal with this
input/output duality and the appropriate methodology
very much depends on what I call the personality of the data,
i.e. the nature of the data itself, how it was obtained and
what answers we require from it. In this chapter we shall
see some of the ways we can analyse time series data. Let us

start with a few examples.

1.2 One at a Time: Some Examples

IN THE PREVIOUS SECTION WE have seen a first example
of a time series given by the log returns of Apple (shown in
Figure 1.1). We can clearly see a first maximum on August

2nd, 2017. This corresponds to the day Apple released

> Rogel-Salazar, J. (2017). Data
Science and Analytics with Python.
Chapman & Hall/CRC Data
Mining and Knowledge Discovery
Series. CRC Press

t has information about what will

happen at t + 1.

Isn’t it cool to be able to use

interrobangs??

I think data, like humans, has also

some personality .

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON §5

their third-quarter results for 2017, beating earning and
revenue estimates3. There are several other peaks and
troughs during the year of data plotted. These are not
uncommon in many financial time series, and not all may

have a straightforward explanation like the one above.

Another interesting thing we can notice is that if we were to
take the average of the values in the series, we can see that it
is a fairly stable measure. Nonetheless, the variability of the
data points changes as we move forwards in time. We shall
see later on some models that will exploit these observations

to analyse this type of data.

Let us see another example from a very different area: Solar
dynamics. In Figure 1.2 we can see the number of sunspots
per month since 1749 through 2013. The earliest study

of the periodicity of sunspots was the work by Schuster*

in 1906. Schuster is credited with coining the concept of
antimatter, and as cool as that is, in this case we would like
to concentrate on the periodogram analysis he pioneered to

establish an approximate 11-year cycle in the solar activity.

Sunspots indicate intensive magnetic activity in the sun, and
we can see in the figure the regular appearance of maximum
and minimum activity. Understanding the behaviour of
sunspots is important due to their link with solar activity
and help us predict space weather that affects satellite
communication and also provides us with awe-inspiring

and spectacular auroras.

If our goal is indeed to generate predictions from the data

in a time series, there are certain assumptions that can help

3 Archer, S. (2017). Apple
hits a record high after
crushing earnings (AAPL).
http:/ /markets.businessinsider.com
/news/stocks/apple-stock-price-
record-high-after-crushing-
earnings -2017-8-100222647.
Accessed: 2018-05-01

An average return of

approximately zero!

4Schuster, A. (1906). II. On

the periodicities of sunspots.
Philosophical Transactions of

the Royal Society of London

A: Mathematical, Physical and
Engineering Sciences 206(402-412),
69-100

Sunspots are linked to solar
activity, enabling us to carry out

space weather predictions.

http://markets.businessinsider.com
http://markets.businessinsider.com
http://markets.businessinsider.com
http://markets.businessinsider.com

6 J. ROGEL-SALAZAR

250

N
o
o

=
w
o

=
o
o

w
o
L

Num. of Sun spots

1760 1780 1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000
Year

Figure 1.2: Solar activity from 1749
us in our quest. A typical assumption made is that there through 2013
is some structure in the time series data. This structure
may be somewhat obfuscated by random noise. One way Structure = Trend + Seasonality
to understand the structure of the time series is to think of

the trend shown in the series together with any seasonal

variation.

The trend in the Apple log returns discussed earlier on

may not be very obvious. Let us take a look at the closing

price of the Apple stock during the same period. In Figure

1.3 we can see the behaviour of the closing price for a year

since 2017. The plot shows that there is a tendency for the Trend, it should be said!
prices to increase overtime. Similarly, there seem to be some

periodicity in the data.

This brings us to the seasonality in a time series. Seasonality

is understood in this case to be the presence of variations

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 7

180 1

N A

s o N
\
')’Q

9 ¥ 2
Date

©)
,LQ'\T\ ° ,LQ'\T\ o

Figure 1.3: Closing prices for
. . . Apple Inc. for a year since April
observed at regular intervals in our data set. These intervals ;.
may be daily, weekly, monthly, etc. Seasonal variation may
be an important source of information in our quest for

predictability as it captures information that will clearly Seasonality is the presence of

. . . variations at regular intervals.
have an impact on the events you are measuring with your
data. The seasonality in the sunspot activity shown in

Figure 1.2 is undeniable.

1.3 Bearing with Time: Pandas Series

Now THAT WE HAVE A better idea of what makes a time
series dataset different from other types of data, let us
consider how we can deal and manipulate them in a way
that makes life easier for us Jackalope data scientists. I am

sure that you have come across the great and useful Python

8 J. ROGEL-SALAZAR

module called Pandas. Its original author, Wes McKinney
started developing the module to deal with panel data,
encountered in statistics and econometrics®. Indeed he
started using Python to perform quantitative analysis on
financial data at AQR Capital Management. Today, Pandas
is a well-established open source piece of software with

multiple uses and a large number of contributors.

Since time is an important part of a time series, let us take a
look at some data that contains time as one of its columns.
We can start by loading some useful modules including

Pandas and datetime:

import numpy as np
import pandas as pd

from datetime import datetime

We can create a dictionary with some sample data:

data = {’date’: [’2018-01-01', ’'2018-02-01’,
'2018-03-01', '2018-04-01',
'2018-05-01’, '2018-06-01’,
'2018-01-01', ’'2018-02-01',
'2018-03-01’, '2018-04-01’,
'2018-05-01’, '2018-06-01'1,
'visitors’: [35, 30, 82, 26,
83, 46, 40, 57, 95, 57, 87, 42]}

We have visitor monthly data for January through June 2018.

The date is given in a format where the year comes first,
followed by the month and the day. This dictionary can be

readily converted into a Pandas dataframe as follows:

> McKinney, W. (2011). pandas:

a foundational python library

for data analysis and statistics.
Python for High Performance and
Scientific Computing: O'Reilly
Media, Inc

A hint is in the name...

We are creating a dataframe with
two columns: Date and visitors.

Each column is given as a list.

The date is given in the format
"YYYY-MM-DD'.

ADVANCED DATA SCIENCE AND

df = pd.DataFrame(data,

columns=["'date’, 'visitors’'])

Let us take a look at the data:

> df.head()
date visitors
0 2018-01-01 35
1 2018-02-01 30
2 2018-03-01 82
3 2018-04-01 26
4 2018-05-01 83

Notice that when looking at the dataset, the rows have been
given a number (starting with 0). This is an index for the
dataframe. Let us take a look at the types of the columns in

this dataframe:

> df.dtypes

date object
visitors int64

dtype: object

The visitors column is of integer type, but the date
column is shown to be an object. We know that this is a date
and it would be preferable to use a more relevant type. We
can change the column with the to_datetime method in a

Pandas dataframe:

ANALYTICS WITH PYTHON 9

As expected, we have a dataframe

with two columns.

A very Pythonic way of counting.

The type for date is object,

whereas for visitors is integer.

10 J. ROGEL-SALAZAR

df[’'date’] = pd.to_datetime(df[’'date’])

Furthermore, since the date provides an order sequence for
our data, we can do a couple of useful things. First we can
set the index to be given by the date column, and second,

we can order the dataframe by this index:

df.set_index(’date’, inplace=True)

df.sort_index(inplace=True)

We have used the inplace property for both commands
above. This property lets us make changes to the dataframe
in-situ, otherwise we would have to create a new dataframe

object. Let us look at the head of our dataset:

> df.head()

visitors
date
2018-01-01 35
2018-01-01 40
2018-02-01 30
2018-02-01 57
2018-03-01 82

As we can see in the code above, the rows of the dataset
have been ordered by the date index. We can now apply
some slicing and dicing to our dataframe. For instance, we

can look at the visitors for the year 2018:

We can use the to_datetime
method to convert Pandas

columns into date objects.

We set an index and sort the

dataframe by that index.

The inplace property lets us make
changes directly to the dataframe.
Otherwise, we would need to
make copies of it to apply the

changes.

ADVANCED DATA SCIENCE AND

df['2018']

What about if we were interested in the visitors for May,

2018? Well, that is easy:

> df['2018-05"]

visitors
date
2018-05-01 83
2018-05-01 87

Other slicing and dicing techniques used in collection
objects are possible thanks to the use of the colon notation.
For instance, we can request all the data from March, 2018

onwards as follows:

> df[datetime (2018, 3, 1):]
visitors

date

2018-03-01 82
2018-03-01 95
2018-04-01 26
2018-04-01 57
2018-05-01 83
2018-05-01 87
2018-06-01 46
2018-06-01 42

ANALYTICS WITH PYTHON 11

In this case this would correspond
to all our data points.

Here we are filtering for the

visitors in May, 2018.

The colon notation used in other
collection objects in Python works

for Pandas time series too.

12 J. ROGEL-SALAZAR

The truncate method can help us keep all the data points
before or after a given date. In this case, let us ask for the

data up to March 2018:

> df.truncate(after='2018-03-01")

visitors

date
We can truncate the time series

with the truncate method.

2018-01-01 35
2018-01-01 40
2018-02-01 30
2018-02-01 57
2018-03-01 82
2018-03-01 95

Had we used the before parameter instead, we could have
truncated all the data points before March, 2018 instead.
We can use Pandas to provide us with useful statistics for
our dataset. For example, we can count the number of

datapoints per entry in the index:

> df.groupby(’'date’).count()
visitors We can calculate aggregations
with the help of groupby. In this
date case we are interested in the
2018-01-01 2 count.
2018-02-01 2
2018-03-01 2
2018-04-01 2
2018-05-01 2
2018-06-01 2

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON

As expected, we have two entries for each date. We can also
look at statistics such as the mean and the sum of entries.
In this case, we are going to use the resample method for a
series. In effect this enables us to change the time frequency
in our dataset. Let us use the 'M’ offset alias to tell Pandas to

create monthly statistics. For the mean we have:

> df.resample(’'M’).mean()
visitors
date
2018-01-31 37.5
2018-02-28 43.5
2018-03-31 88.5
2018-04-30 41.5
2018-05-31 85.0
2018-06-30 44.0

Similarly, for the sum we have:

> df.resample(’'M’).sum()
visitors

date

2018-01-31 75
2018-02-28 87
2018-03-31 177
2018-04-30 83
2018-05-31 170
2018-06-30 88

The resample method lets us
change the frequency in our

dataset.

We can calculate the mean.

And the sum too.

13

14 J. ROGEL-SALAZAR

An offset alias, such as 'M’ used in the code above is a Offset aliases are listed in Table
string that represents a common time series frequency. We -

can see some of these aliases in Table 1.1.

We can even create a plot of the dataset. In this case, we
show in Figure 1.4 the monthly sum of visitors for the

dataset in question.

1801 — visitors
160 -
140
120+
100+
80 1
Ja'n Feb Mar Apr May Jun
2018
Date
Figure 1.4: Total of monthly
visitors for the data entered
It is possible to obtain descriptive statistics with the use of manually.

the describe method, and we can do so per relevant group.
For example, we can request the information for each date

in the dataset:

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 15

Table 1.1: Offset aliases used by

Alias Description Pandas to represent common time
series frequencies.

B business day frequency

C custom business day frequency

D calendar day frequency

W weekly frequency

M month-end frequency

SM semi-month-end frequency (15th and end of
month)

BM business month-end frequency

CBM custom business month-end frequency

MS month-start frequency

SMS semi-month-start frequency (1st and 15th)

BMS business month start frequency

CBMS custom business month-start frequency

Q quarter-end frequency

BQ business quarter-end frequency

Qs quarter start frequency

BQS business quarter-start frequency

AY year-end frequency

BA, BY business year-end frequency

AS, YS year-start frequency

BAS, BYS business year-start frequency

BH business hour frequency

H hourly frequency

T, min minutely frequency

S secondly frequency

L, ms milliseconds

U, us microseconds

N nanoseconds

16 J. ROGEL-SALAZAR

df.groupby(’'date’).describe()

In Table 1.2 we see the descriptive statistics for the data

entered manually earlier on. For brevity we have decided

not to include the count column.

Visitors

mean std min 25% 50% 75% max
date
2018-01-01 37.5 3.53 350 36.25 37.5 3875 40.0
2018-03-01 885 9.19 820 8525 88.5 9175 95.0
2018-04-01 41.5 21.92 26.0 33.75 41.5 49.25 57.0
2018-05-01 85.0 282 830 84.00 850 86.00 87.0
2018-06-01 44.0 2.82 42.0 43.00 44.0 45.00 46.0

Given that date and time are important components of a

time series, Pandas has some neat tricks to help us deal with

them. For example, it is possible to use date formats such as

that shown above, i.e.,, 'YYYY-MM-DD’. We can also provide

a date in other formats, for instance consider the following

code:

> date =

pd.to_datetime("14th of October, 2016")

> print(date)

Timestamp(’'2016-10-14 00:00:00")

We have successfully transformed a date given in natural

language to a time stamp. We can also do the opposite; in

other words, we can obtain a string of the time stamp to tell

Table 1.2: Descriptive statistics for
the data entered manually. We
are not including the count in this
table.

We can provide a data in plain
natural language, and convert it to

a date type.

How cool is that?

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 17

Table 1.3: Some format directives
Directive Meaning for the strftime method.

o°
Q

abbreviated weekday name

o°
>

full weekday name
abbreviated month name

o°
(on

full month name

o°
[0}

o°
@]

preferred date and time representation
day of the month (1 to 31)

same as %m/%d/ %y

day of the month (1 to 31)

month (1 to 12)

minute

o o° o0 o°
32 0o O Qo

o°
=

second

o°
(7p]

o°
c

weekday as a number (Mon=1 to 7)

us the weekday, month, day, etc. We can do this thanks to

the strftime method together with a format directive. Some strftime lets us obtain a string
format directives for strftime are listed in Table 1.3. Let out of the time stamp.
us take a look at extracting the full weekday name (%A), the

name of the month (%B) and the weekday number (%u).

> date.strftime(’'%A’)

'"Friday’

> date.strftime(’'%B’)

"October’

> date.strftime(’'%su’)

151

18 J. ROGEL-SALAZAR

1.3.1 Pandas Time Series in Action

IN SOME CASES WE MAY need to create time series data from
scratch. In this section we are going to explore some of the
ways in which Pandas enables us to create and manipulate
time series data on top of the commands we have discussed

up until this point.

The first thing to take care of is the time ranges required for
our data set. For example, we can ask Pandas to create a

series of dates with date_range:

> pd.date_range(’2018-05-30", ’'2018-06-02")

DatetimeIndex([’'2018-05-30', ’'2018-05-31",
'2018-06-01', '2018-06-02'],
dtype='datetime64([ns]’, freq='D")

Note that the output of the command above is an index
covering the time range requested with a daily frequency, as

shown in the output with freq='D".

An alternative to the above command is to provide a start
date, but instead of giving an end date, we request a

number of “periods” to cover with the time series:

> pd.date_range('2018-05-30', periods=4)

DatetimeIndex([’'2018-05-30’, ’'2018-05-31’,
'2018-06-01', '2018-06-02'1,
dtype='datetime64[ns]’, freq='D")

We can determine a time range by

specifying start and end times.

Recall the time offset aliases

shown in Table 1.1.

Alternatively, we can provide
a start time and a number of

periods.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 19

This hints to the fact that we can provide a number of
periods to cover, as well as the frequency we require. For

example, we can request for four monthly periods:

> pd.date_range(’'2018-05-30', periods=4, freq='M’)

DatetimeIndex([’'2018-05-31’, ’'2018-06-30’,
'2018-07-31', '2018-08-31'1,
dtype='datetime64[ns]’, freq='M")

As you can see, all we had to do was specify the monthly

frequency with freq="M".

Let us construct a more complicated dataset: For a period
of four days starting on June 4, 2018; we take readings for
four features called A, B, C and D. In this case we will
generate the readings with a random number sampled
from a standard normal distribution. Let us create some

definitions:

from numpy.random import randn
idx = pd.date_range(’'2018-06-04 00:00:00"',
periods=4)

cols = ['A’, 'B’, 'C’", 'D']

We will now create data for four rows and four columns

with the help of randn:

data = randn(len(idx), len(cols))

Here we provide a start time,
a number of periods and the
frequency for those periods.

The random number can be
obtained with the method

random. randn from numpy.

randn(m, n) creates an array of m

rows and n columns.

20 J. ROGEL-SALAZAR

With this information, we now create our dataframe.

date

2018-06-04
2018-06-05
2018-06-06
2018-06-07

> print(df)

df = pd.DataFrame(data=data,

index=idx, columns=cols)

df.index.name='date’

-0.025491 1.378149

0.747168 -0.175478

-0.640565 -0.061296

1.160137 -1.909562

-1.276321 -0.200059
0.181216 -0.601201
1.495377 -0.042206
1.300981 -1.653624

A table like the one above is useful to summarise data

and it is fit for “human consumption”. However, in man
Yy

applications, it is much better to have a “long format” or

“melted” dataset, i.e., instead of arranging the data in a

rectangular format as shown above, we would like all the

data readings in a single column.

In ordet to achieve this, we need to repeat the dates and we

also require a new column to hold the feature to which each

reading corresponds. This can easily be done with Pandas

in a single command. The first thing we need to do is reset

the index.

df.reset_index(inplace=True)

In order to melt the dataframe, we will use the melt method

that takes the following parameters: A column that will

become the new identifier variable with id_vars, the

Since we used random numbers
to generate the data, the numbers
shown here will differ from those

you may obtain on your computer.

In other words, it is an
arrangement that a human will

find easy to read and understand.

This is because we need the date
to be part of the new formatted

dataset.

ADVANCED DATA SCIENCE AND

columns to un-pivot are specified with value_vars and
finally the names for the variable and value columns with

var_name and value_name, respectively:

> melted = pd.melt(df, id_vars='date’,
var_name='feature’,
value_name='reading’)

> print(melted)

date feature reading

0 2018-06-04 A -0.025491

1 2018-06-05 A 0.747168

2 2018-06-06 A -0.640565

3 2018-06-07 A 1.160137

4 2018-06-04 B 1.378149

5 2018-06-05 B -0.175478

14 2018-06-06 D -0.042206

15 2018-06-07 D -1.653624

We can now set the index and sort the melted dataset:

melted.set_index('date’, inplace=True)

melted.sort_index(inplace=True)

1.3.2 Time Series Data Manipulation

LET US TAKE A LOOK at some of the manipulations we have
described above used in a more real dataset. Remember the

time series for Apple Inc. returns discussed in Section 1.2?

ANALYTICS WITH PYTHON 21

If no value_vars is provided, all

columns are used.

The original columns have become
entries in the column called
“features” and the values are in

the column “reading”.

22 J. ROGEL-SALAZAR

Well, we will delve a bit more into that data. The dataset
is available at® https://doi.org/10.6084/m9.figshare.
6339830.v1 as a comma-separated value file with the name

“APPL.CSV”. As usual, we need to load some libraries:

import numpy as np

import pandas as pd

We need to load the dataset with the help of Pandas; in this

case, with the read_csv method:

appl = pd.read_csv('APPL.CSV’)
appl.Date = pd.to_datetime(appl.Date,

format="%Y-%m-%d"’)

In the first line of the code above, we have used the
read_csv method in Pandas to load our dataset. We know
that the column called “Date” should be treated as datetime
and hence we use to_datetime to make that conversion.
Please note that we are also giving Pandas a helping hand
by telling it the format in which the date is stored, in this

case as year, followed by month and day.

The dataset contains open, high, low and close (i.e., OHLC)
prices for Apple Inc. stock between April 2017 and April
2018. We are going to concentrate on the “Close” column,

but before we do that, we need to ensure that the dataset is

indexed by the time stamps provided by the “Date” column.

We can easily do that with the set_index method as follows:

¢ Rogel-Salazar, J. (2018a, May).
Apple Inc Prices Apr 2017 -
Apr 2018. https://doi.org
/10.6084/myg.figshare.6339830.v1

Make sure that you pass on the
correct path for the file!

We are using to_datetime to

ensure that dates are appropriately

typed.

https://doi.org/10.6084/m9.figshare.6339830.v1
https://doi.org/10.6084/m9.figshare
https://doi.org/10.6084/m9.figshare.6339830.v1
https://doi.org/10.6084/m9.figshare

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 23

appl.set_index(’'Date’, inplace=True)

We can take a look at the closing prices:

> appl[’Close’].head(3)

Date

2017-04-25 144.529999
2017-04-26 143.679993
2017-04-27 143.789993

Notice that although we only requested Python to give us a
look at the Close column, the printout obtained added
automatically the index given by the dates. The data
provided is already ordered; however, in case we are dealing
with data where the index is not in the correct order, we can

use sort_index:

df.sort_index(inplace=True)

The daily closing prices can be used to calculate the return
at time f for example, this can be expressed as:

_bP—P

R ,
: P

(1.1)

where P; is the price at time t and P;_; is the price at the
previous time period. We can apply this calculation in a

very easy step in Pandas as follows:

appl[’'pct_change’] = appl.Close.pct_change()

We can see the result of this calculation:

We set up the index with
set_index().

We centre our attention on the use

of the closing prices.

Sorting by the index is done with

sort_index().

Effectively a percentage change.

We are using pct_change() to

calculate the returns.

24 J. ROGEL-SALAZAR

> appl[’pct_change’].tail(3)

2018-04-23 -0.002896
2018-04-24 -0.013919
2018-04-25 0.004357

Continuous compounding of returns leads to the use of log
returns and as mentioned in Section 1.2 they are calculated
as follows:

re =log(1+ R¢) = log (Pp_tl) = log(P;) —log(P;—1). (1.2)

We need to calculate the logarithm of the price at each time
t and then take the difference between time periods. We can
certainly do this in Python, and Pandas gives us a helping
hand with the diff () method:

appl['log_ret’] = np.log(appl.Close).diff()

We can check the result of this operation by looking at the

values in the new column we have created:

> appl[’log_ret’].tail(3)

2018-04-23 -0.002901
2018-04-24 -0.014017
2018-04-25 0.004348

This is the data that we show in Figure 1.1, and indeed
this is the way we calculated that time series shown in the

figure.

The percentage change from one

day to the next is easily calculated.

Continuous compounding of
returns leads to the use of log

returns.

The diff method calculates the
difference from one time period to

the next.

We are looking at the last three

entries in our table.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 25

It is fairly common to have financial data series like the

one we have used above, where the frequency is given

by the end of day prices. However, the frequency can be
different, for instance given by the minimum upward or
downward price movement in the price of a security. This
is known as a tick. Let us take a look at tick data for the
Bitcoin/USD exchange rate. The dataset is available at”
https://doi.org/10.6084/m9.figshare.6452831.v1l as a
comma-separated value file with the name bitcoin_usd.csv,
and it contains prices for covering tick data between March

31 and April 3, 2016.

We can read the data in the usual way. However, if we were
to inspect the data, we will notice that the date is stored in a
column called time_start, and that the format is such that
the day is placed first, followed by the month and the year;
the time in hours and minutes is provided. We can use this

information to create a rule to parse the date:

parser = lambda date: pd.datetime.\
strptime(date, ’'%d/%sm/SsY %H:%M’)

We can now provide extra information to Pandas to read the

data and parse the dates at the same time:

fname = ’'bitcoin_usd.csv’

bitcoin = pd.read_csv(fname,
parse_dates=['time_start’],
date_parser=parser,

index_col='time_start’)

A “tick” is a measure of the
minimum upward or downward
movement in the price of a

security.

7 Rogel-Salazar, J. (2018b, Jun).

Bitcoin/USD exchange rate Mar
31-Apr 3, 2016. https://doi.org
/10.6084/myg.figshare.6452831.v1

Pro tip: Inspect your data before
importing it, it will save you a few

headaches!

We specify the columns to be
parsed and how they shall be

parsed!

https://doi.org/10.6084/m9.figshare.6452831.v1
https://doi.org/10.6084/m9.figshare.6452831.v1
https://doi.org/10.6084/m9.figshare.6452831.v1

26 J. ROGEL-SALAZAR

Notice that we are specifying what columns need to be
parsed as dates with parse_dates and how the parsing
should be performed with date_parser. We also load the
dataset indicating which column is the index. Let us

concentrate now on the closing price and the volume:

; ; . We are effectively creating a new
ticks = bitcoin[[’close’, ’volume’]] Y &

dataframe called ticks.

The data is roughly on a minute-by-minute frequency. We
can use Pandas to resample the data at desired intervals.
For instance we can request for the data to be sampled every

five minutes and take the first value in the interval:

> ticks.resample('5Min’).first()

close volume
. We can resample our data with the
time_start

2016-03-31 00:00:00 413.27 8.953746

2016-03-31 00:05:00 413.26 0.035157

help of resample().

2016-03-31 00:10:00 413.51 43.640052

We can also ask for the mean, for example

> ticks.resample(’'5Min’) .mean()

close volume
) We can specify how the
time_start . .
resampling will be performed.

2016-03-31 00:00:00 413.270 2.735987
2016-03-31 00:05:00 413.264 2.211749
2016-03-31 00:10:00 414.660 37.919166

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 27

In this way we could get the closing price for the day by

resampling by day and requesting the last value:

> ticks.resample('D").last()

close volume
time_start
2016-03-31 416.02 0.200000
2016-04-01 417.90 52.099684
2016-04-02 420.30 0.850000

Now that we know how to resample the data, we can
consider creating a new open, high, low and close set of
prices for the resampled data. Let us do this for the

five-minute bars:

> bars = ticks[’'close’].resample(’'5Min’).ohlc()

open high low close
time_start
2016-03-31 00:00:00 413.27 413.27 413.27 413.27
2016-03-31 00:05:00 413.26 413.28 413.25 413.28
2016-03-31 00:10:00 413.51 414.98 413.51 414.98

Pandas will take the first and last values in the interval to be
the open and close for the bar. Then it will take the max and
min as the high and low, respectively. In this way, we start

filtering the data. For example, imagine we are interested in

the prices between 10 am and 4 pm each day:

The closing for the new
resampling interval can be

obtained from the last value.

The ohlc() method lets us find the
OHLC prices for our new sampled
data.

28 J. ROGEL-SALAZAR

> filtered = bars.between_time(’'10:00', '16:00')

Notice the use of between_time to

) filter the data.
open high low close

time_start
2016-03-31 10:00:00 416.00 416.00 415.98 415.98
2016-03-31 10:05:00 415.98 415.98 415.97 415.97

2016-04-03 15:55:00 421.01 421.02 421.00 421.00
2016-04-03 16:00:00 421.01 421.01 421.01 421.01

We may be interested in looking at the price first thing in

the morning — say 8 am:

> bars.open.at_time(’8:00")

time_start
In this case we are using the
2016-03-31 08:00:00 416.11 at_time method.

2016-04-01 08:00:00 416.02
2016-04-02 08:00:00 420.69
2016-04-03 08:00:00 418.78

Not only that, we can request the percentage change too by

combining the methods we have already discussed:

> bars.open.at_time(’8:00').pct_change()

time_start
And the methods can be easily
2016-03-31 08:00:00 NaN

combined!

2016-04-01 08:00:00 -0.000216
2016-04-02 08:00:00 0.011225
2016-04-03 08:00:00 -0.004540

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 29

Please note that the first percentage change cannot be

calculated as we do not have a comparison data point from

the previous interval. In this case, Pandas indicates this by

the use of NaN.

If we inspect the data with a bit more detail, we will see
that for the last part of April 3, the frequency is such that

we have some missing bars when sampling at five-minute

intervals:

> bars.tail()

time_start

2016-04-03 23:35:00
2016-04-03 23:40:00
2016-04-03 23:45:00
2016-04-03 23:50:00
2016-04-03 23:55:00

open high low

420.6 420.6 420.6
NaN NaN NaN
NaN NaN NaN

420.6 420.6 420.6

421.0 421.0 420.6

close

420.6
NaN
NaN

420.6

420.6

We can fill in missing data with the help of fillna, which

takes a parameter called method. It can be either 'pad’ or

"ffill’ to propagate last valid observation forward; or

instead either 'backfill’ or 'bfill’ to use the next valid

observation to fill the gap. We can also limit the number of

consecutive values that should be filled in with limit.

For instance we can fill only one gap by propagating the last

valid value forward:

In many cases we may find that
we have some missing data in our

datasets...

We can fill in missing data with
the help of fillna().

30 J. ROGEL-SALAZAR

2016-04-03 23:35:00 420.60 420.60
2016-04-03 23:40:00 420.60 420.60
2016-04-03 23:45:00 NaN NaN
2016-04-03 23:50:00 420.60 420.60
2016-04-03 23:55:00 421.00 421.00

> bars.fillna(method="ffill’, limit=1)

420.60
420.60

NaN
420.60
420.60

420.60
420.60

NaN
420.60
420.60

Let us fill both gaps and create a new dataframe:

filledbars = bars.fillna(method='"ffill")

For the volume it would make sense to consider the sum of

all the securities traded in the five-minute interval:

vol = volume.fillna(0.)

volume = ticks.volume.resample('5Min’).sum()

A plot of the open, high, low and close prices for the five-

minute bars, together with the corresponding volume for

the 3 of April between 9 am and 11.59 pm is shown in

Figure 1.5 and can be created as follows:

'23:59") .plot(\
color=['gray’,’'gray’, 'gray’, k'],
sty'l-e=[l_”l__lll_.llI_+I])

.plot(secondary_y=True, style="k-

o)

filledbars[’'2016-04-03'].between_time(’9:00",\

vol['2016-04-03"].between_time(’'9:30','23:59")\

Here we have filled the missing
data by bringing the last value
forward and limitting the

operation to one time period.

The plotting commands that we
know and love are available to the

Pandas series and dataframes too.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 31

— open ! 1 r350
--- high i
—-= low I
— close \ |
421 i\ 300
\
| \ "'
r250
\
‘ w M
420 ¥ 1 \\] Al <
8 ,.\ \!y "". I r200 o
= Wy [
DL_ ’I‘“\ / { Tl Vi 3
ol 7 1150 @
] UH (¥
419 “I ‘ / ‘ "
VD . ’ £100
I
|
;
| 50
418 1]
) ‘ I
¢ J4 I N Lo
09:00 12:00 15:00 18:00 21:00 00:00

04-Apr

Time

Figure 1.5: Open, high, low and
close prices for the exchange rate

. . . f bitcoin/USD.
1.4 Modelling Time Series Data orpeem
WE KNOW THAT THERE Is no such a thing as a perfect model,
just good enough ones. With that in mind, we can start
thinking about the assumptions we can make around data There is no such thing as a perfect

in a time series. We would like to start with a simple model, ~ model-- just good enough ones.

and perhaps one of the first assumptions we can make is
that there is no structure in the time series. In other words,
we have a situation where each and every observation is in

effect an independent random variate.

32 J. ROGEL-SALAZAR

A good example of this would be white noise. In this case
when facing this type of signal the best we can do is simply

predict the mean value of the dataset.

Let us create some white noise in Python with the help of

numpy:

import numpy as np

import pandas as pd

white = 2#np.random.random(size=2048)-1

white = pd.Series(white)

In the code above, we are using the random method in
numpy . random to draw samples from a uniform distribution.
We would like our samples to be drawn from Unif/[a,b)
witha = —1 and b = 1 so that we have white noise with
mean zero. A plot for one such time series is shown in

Figure 1.6.

Remember that we are assuming that each observation is
independent from the other. If there is correlation among
the values of a given variable, we say that the variable is
autocorrelated. For a repeatable (random) process X, let X; be
the realisation of the process at time ¢; also let the process
have mean y; and variance ¢2. The autocorrelation R(s, t)

between times t and s is given by:

R(S, t) _ E[(Xf — #f)(XS — ‘MS)]

010 , (1.3)

where E[-] is the expectation value. Autocorrelation

provides us with a measure of the degree of similarity

White noise is whose intensity is
the same at all frequencies within

a given band.

Hence the use of (b — a)(sample) +
a.

We are keeping it simple.

Autocorrelation.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 33

1.00

0.751

0.50

0.251

— 0.007

—0.25

—0.50

—0.751

—1.00

0 500 1000 1500

between the values of a time series and a lagged or shifted
version of that same series. Notice that we can recover the
usual correlation definition for the case where X; and X; are
two random variables not drawn from the same process at

lagged times.

Therefore, as with correlation, the values returned by an
autocorrelation calculation lie between —1 and 1. It is also
important to mention that autocorrelation gives us
information about the existence of linear relationships. Even
when the autocorrelation measure is close to zero, there may
be a nonlinear relationship between the values of a variable

and a lagged version of itself.

Let us calculate the autocorrelation for our generated white

noise:

2000

Figure 1.6: White noise with zero
mean, constant variance, and zero
correlation.

Autocorrelation values lie between
—land 1.

34 J. ROGEL-SALAZAR

> for lag in range(1,5):

Autocorrelation at lag=1
Autocorrelation at lag=2
Autocorrelation at lag=3

Autocorrelation at lag=4

print("Autocorrelation at lag={0} is {1}".\

format(lag, white.autocorr(lag)))

is 0.027756062237309434
is 0.017698046805029784
is -0.016764938190346888
is -0.03636909301996918

The values returned by autocorr are the same as those we

would obtain if we calculated the correlation of the time

series with a shifted version of itself. Take a look:

0.027756062237309434

> print(white.corr(white.

shift(1l)))

Here shift(n) translates the series by n periods, in this case

1, enabling us to calculate the autocorrelation value.

Finally, predicting (or calculating) the mean value can be

readily done as follows:

> print(white.mean())

-0.019678911755368275

1.4.1 Regression... (Not) a Good Idea?

WE HAVE SEEN HOW TO deal with processes that have no

inherent structure, and hence the predictions we can make

Autocorrelation can be calculated

with autocorr.

As we can see the result is the

same.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 35

are quite straightforward. Let us take a step forward and

consider more interesting processes. If we were to compare And boring ones, for that matter.
the time series for the closing prices of the Apple stock

shown in Figure 1.3 with the white noise we generated

for Figure 1.6, we can clearly see that there is indeed more

structure in the price data: There are peaks and troughs and

we can even notice an upward trend.

1 A
AN
170 /J ’. (9= l

165 2
- / V
160 A e l

o]
145 /j" \”'"‘ [

Price

i —— Closing Price
V w === Trend
o0 o A0 A o ok
4 4 4 4 & &
e e e e e e
Date

Figure 1.7: Closing prices for
Apple Inc. for a year since April
2017 and a trend line provided by

We are familiar with some techniques such as multivariate L ;
a multivariate regression.

regression, and it may be conceivable to apply these

techniques to the data we have. At the very least, it may

provide us with an idea of the trend in the time series.

. ., . . Regression may provide us with

Ignoring seasonal variation and random noise, we can fit a ,
an idea of the trend.

polynomial model to the data as show in Figure 1.7. We can

see the general trend in the set. But is this really a suitable

model?

36 J. ROGEL-SALAZAR

It is hard to believe that the closing price of the Apple
stock is simply a function of the calendar date!! It is more
likely that the prices are a function of their own history,
and therefore we require methods that are able to capture
precisely this assumed dependency, and given the results
decide whether the model is fit for purpose. We will tackle

some models to achieve this in the rest of this chapter.

1.4.2 Moving Averages and Exponential Smoothing

WE ARE INTERESTED IN FINDING a model that is able
to forecast the next value in our time series data. In the
previous section we have seen how we can make some
assumptions about the data we have and use that to our
advantage. In the example with the Apple Inc. prices, we
have been able to fit a regression model to the data, but

surely we can do better than that.

What about if we are able to forecast the future value based
on the past values of the time series? For example, we may
be able to take the average of the last n observations as

the forecast for the next time period. This methodology is
known as moving averages. For example, in the case where

n = 3, the smoothened value at time t, s;, will be given by:

Xt o+ X1+x
St:—t 2 3t ! t~ (14)

We can also consider giving greater importance to more
recent past values than older ones. It sounds plausible,

right? Well, this is actually what exponential smoothing

As well as market forces, product

announcements, etc.

We are interested in creating a

forecast.

In moving averages, the forecast is
provided by the simple mean over

a period of time.

An alternative name for moving

averages is rolling averages.

Exponential smoothing works by

weighting past observations.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 37

enables us to do. The weighting is performed via constant
values called smoothing constants. The simplest method is
appropriately called simple exponential smoothing (SES) and it

uses one smoothing constant, .

In SES, we start by setting sp to xg and subsequent periods

at time ¢ are given by:
st =axt + (1 —a)spq, (1.5)

with 0 < a < 1. The smoothing is a function of a; we have a
quick smoothing when « is close to 1, and a slow one when
it is close to 0. We choose the value of & such that the mean

of the squared errors (MSE) is minimised.

We can calculate moving averages and exponential
smoothing on a time series with Pandas. For moving
averages, we simply use the rolling method for Pandas
dataframes. In the case of the Apple Inc. closing prices we

have been investigating, we can write the following:

appl['MA3’]=appl[’'Close’].rolling(window=3).mean()

where we have provided the size of the moving window
and indicated that the aggregation of the data will be the

mean of the values.

For exponential smoothing, Pandas provides the ewm

method. We simply pass the parameter « as follows:

alpha=0.6
appl['EWMA’]=apple['Close’].ewm(alpha=alpha).mean()

The simple exponential smoothing
method.

We can use Pandas to calculate
moving averages and exponential

smoothing.

EWM stands for Exponential
Weighted Methods.

38 J. ROGEL-SALAZAR

180

170

160

Price

150

180

170

160

Price

LN

i

"

AT

ANTWA

-

e/

—— Closing Price
== Moving Average

2017-06

2017-08 2017-10

2017-12

2018-02

t
2018-04

SN A

N/

s

N

A
W

s

ﬂ

U'/\"‘ W]
AT

W

v

W/

—— Closing Price
== Exponential Smoothing

2017-06

2017-08 2017-10

2017-12

Date

t
2018-02

The method also accepts other definitions such as the centre

of mass, the span or the half-life. In Table 1.4 we list the

relationship between « and these alternative parameters.

EWM parameter Definition

Centre of Mass (com) a = Hﬁ' for com >0

Span = ﬁ, for span > 1

Half-life x=1—exp [%} , for halflife > 0

In Figure 1.8 we can see the result of using moving averages

and exponential smoothing compared to the closing prices

for Apple Inc.

t
2018-04

Figure 1.8: Moving averages
(upper panel) and exponential
smoothing (lower panel) applied
to the closing prices for Apple Inc.

Table 1.4: Parameters specifying
the decay applied to an
exponential smoothing calculation
with ewm.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 39

1.4.3 Stationarity and Seasonality

WE HAVE BEEN CONSIDERING SOME of the assumptions we
can make on our data in order to come up with models that A stationary time series is one

. here it: i d
enable us to understand the underlying phenomena and where 1is mean, variance an

autocorrelation do not change over
create predictions. One such common assumption is that Hme.

our time series is stationary.

In this context, we say that a process is stationary if its

mean, variance and autocorrelation do not change over time.

As you can imagine, stationarity can be defined in precise

mathematical terms, but a practical way of remembering Effectively a flat-looking series.
what we are talking about is effectively a flat-looking series,

one where there is no trend and has constant variance over

time and without periodic fluctuations or seasonality.

Before we continue our discussion about stationarity, let

us take a look at seasonality. This can be understood as a

cycle that repeats over time, such as monthly, or yearly. This Or any other time interval.
repeating cycle may interfere with the signal we intend to

forecast, while at the same time may provide some insights

into what is happening in our data.

Understanding the seasonality in our data can improve our
modeling as it enables us to create a clearer signal. In other
words, if we are able to identify the seasonal component in
our series, we may be able to extract it out leaving us with a A time series with a clear seasonal

component which we understand (the seasonal part) plus a component is said to be non-

stationary.
clearer relationship between the variables at hand. When we
remove the seasonal component from a time series, we end

up with a so-called seasonal stationary series.

40 J. ROGEL-SALAZAR

There are many ways in which we can take a look at the
seasonality in a time series. In this case, let us take a look at
using the Fast Fourier Transform (FFT) to convert the time-
dependent data into the frequency domain. This will enable
us to analyse if any predominant frequencies exist. In other
words, we can check if there is any periodicity on the data.
We will not cover the intricate details of the mathematics
behind the FFT, but a recommended reading is the excellent

Numerical Recipes® book.

Let us take a look at the sunspot data we plotted in Figure
1.2. In that figure we have monthly observations for the sun
activity. In the analysis below we will resample the data
into yearly observations. The data can be found? at https:
//doi.org/10.6084/m9.figshare.6728255.v1 as a comma-
separated value file with the name “sunspots_month.CSV”.
After loading the usual modules such as Pandas, we can

read the data as follows:

sun = pd.read_csv(’'sunspots_month.csv’)
sun.Year = pd.to_datetime(sun.Year,
format="%Y-%m-%d’)

sun.set_index(’'Year’, inplace=True)

We are specifying the format in which the dates should be
parsed. We also indicate which column is the index in our

dataset.

As we mentioned before, we have monthly data and we
would like to take a yearly view. The first thing we are

going to do is obtain a yearly average:

8 Press, W., S. Teukolsky,

W. Vetterling, and B. Flannery
(2007). Numerical Recipes 3rd
Edition: The Art of Scientific
Computing. Cambridge University
Press

9 Rogel-Salazar, J. (2018d, Jul).
Sunspots - Monthly Activity
since 1749. https://doi.org
/10.6084/myg.figshare.6728255.v1

While loading the data, we can
specify the format for reading the
date.

https://doi.org/10.6084/m9.figshare.6728255.v1
https://doi.org/10.6084/m9.figshare.6728255.v1
https://doi.org/10.6084/m9.figshare.6728255.v1
https://doi.org/10.6084/m9.figshare.6728255.v1

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 41

sun_year = sun.resample(’'Y’).mean()

Let us now load the FFT pack from scipy:

from scipy import fftpack

Given the signal of the yearly sunspot activity we can
calculate its Fourier transform. We also calculate a

normalisation constant n:

Y=fftpack.fft(sun_year['Value'l])
n=int(len(Y)/2)

With this information we can create an array to hold the
frequencies in the signal, with the period being the inverse

frequency:

freq=np.array(range(n))/(2xn)
period=1./freq

We can now calculate the power spectrum of the signal as

follows:

power=abs(Y[1l:n])*x*2

A plot of the power spectrum versus the period is shown in
Figure 1.9 where we can see that the sunspot activity data
is periodic, and that the sunspots occur with a maximum in

activity approximately every 11 years. Cool!

We are resampling the data to a
yearly frequency.

Fast Fourier transform capabilities

are part of fftpack in scipy.

We calculate the FFT of the signal

and a normalisation constant.

With this information we can

obtain the period.

And finally the power spectrum of
the signal.

42 J. ROGEL-SALAZAR

le7

1.4

1.2

|FFT|2

o
o

o
2]
R e SR

0.4

\A
0.0 .

0 5 10 15 20
Period (Year)

1.4.4 Determining Stationarity

WE HAVE SEEN THAT THERE is seasonality in our sunspot
data and so, it is a non-stationary time series. In other
cases we may need to check that the mean and variance are
constant and the autocorrelation is time-independent. We
can do some of these checks by plotting rolling statistics

to see if the moving average and/or moving variance vary

with time.

Another method is the Dickey-Fuller test which is a
statistical test for checking stationarity. In this case the null
hypothesis is that the time series is nonstationary based on
the results of a test statistic, and critical values for different
confidence levels. If the test statistic is below the critical
value, we can reject the null hypothesis and say that the

series is stationary.

25 30

Figure 1.9: Analysis of the power
spectrum of the sunspots data. We
can see that a maximum in activity
occurs approximately every 11
years.

Rolling statistics can help us

determine stationarity.

The Dickey-Fuller tests enables us

to check for stationarity too.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 43

—— Sunspot activity
| === Rolling Mean
—-= Rolling Standard Deviation

e
u N
o (]

[ary
N
w

~
w
s

Num. of Sun spots
g 3 8

N
w
s

o
L

1760 1780 1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

Year

Let us see what this means for our monthly sunspot activity
data. We can calculate rolling statistics for the mean and

variance:

rolling_mean = sun_year[’'Value’'].rolling(2).mean()

rolling_std = sun_year[’'Value’].rolling(2).std()

In Figure 1.10 we can see the rolling statistics for the
sunspot activity. The variation on the average is larger than
that on the standard deviation, but they do not seem to be

increasing or reducing with time.

Let us take a look at the Dickey-Fuller test. In this case we
are going to use the adfuller method in statsmodels time

series analysis module tsa.stattools:

from statsmodels.tsa.stattools import adfuller

df_test = adfuller(sun_year[’Value'],autolag="AIC")

Figure 1.10: Sunspot activity and
rolling statistics for the average
and the standard deviation.

Rolling statistics for a window of 2

years.

The Dickey-Fuller test can be
evaluated with the help of

adfuller method in statsmodels.

44 J. ROGEL-SALAZAR

We can now take a look at the results of the Dickey-Fuller

test with the following function:

def isstationary(df_test):
stationary=[]
print(’'Test Statistic is {0}’'.format(df_test[0]))
print(’'p-value is {0}'.format(df_test[1]))
print('No. lags used = {0}’'.format(df_test[2]))
print(’No. observations used = {0}'.\
format (df_test[3]))
for key, value in df_test[4].items():
print(’Critical Value ({0}) = {1}'.\
format(key, value))
if df_test[0]<=value:
stationary.append(True)
else:
stationary.append(False)

return all(stationary)

Let us look at the results:

> isstationary(df_test)

Test Statistic is -2.4708472868362916
p-value is 0.12272956184228762

No. lags used = 8

No. observations used = 256

Critical Value (1%) = -3.4561550092339512
Critical Value (10%) = -2.5728222369384763
Critical Value (5%) = -2.8728972266578676

False

The Dickey-Fuller test
implementation returns 4 items
including the test statistic, the
p-value, the lags used and the

critical values.

In this case we see that the Dickey-
Fuller test applied to the sunspots
data supports the null hypothesis.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 45

As we can see, we cannot reject the null hypothesis and
the yearly data for the sunspot activity is therefore non-

stationary.

Extracting the trend and seasonality out of the time series
data provides us with better ways to understand the process
at hand. A useful technique for this is to decompose the
time series into those components that are amenable to

be described by a model. Given a time series Y, a naive

additive model decomposes the signal as follows:
Y =Ty + St + e, (1.6)

where T; is the trend, S; is the seasonality and ¢;
corresponds to the residuals or random variation in the
series. An alternative to this decomposition is the so-called

multiplicative model:

Yr = (Tt) (S¢) (er). (1.7)

We can use seasonal_decompose from statmodels to

decompose the signal using moving averages.

Since we have seen that we have a seasonality of around 11
years, we will use this information to decompose our time

series:

import statsmodels.api as sm
dec_sunspots = sm.tsa.seasonal_decompose(sun_year,\

model="additive’, freqg=11)

We can use a multiplicative method by passing on the

parameter model="multiplicative’. The result of the

Systematic components are those
that can be modelled.

Additive decomposition.

Multiplicative decomposition.

seasonal_decompose lets us
decompose a time series into its
systematic and non-systematic

components.

46 J. ROGEL-SALAZAR

decomposition is an object that has a plotting method. We
can look at the result of the decomposition by typing
dec_sunspots.plot() and the output can be seen in Figure

1.11 where we have plots for the trend, seasonality and the

residuals.
80 N
2 A \ W
HIENARE I\ A \
) L\ |V \
o AR LA I
L UYL
SOOI DN
s NEY
sl A A WA ANANA A
£ 0 TV VUV VY VUV VY VYUY
Let us apply the Dickey-Fuller test to the bitcoin tick data ::i;ﬁ‘jﬁi;?‘lponents e

defined on page 26. Let us resample the data on 15-minute

intervals and take the average:

closing_bitcoin=ticks[’'close’].\
resample('15Min’).mean()
df_test_bitcoin = adfuller(closing_bitcoin,\ The bitcoin data is non-stationary.

autolag="AIC")

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 47

Seasonality

0;~m~~~—— M M N M M
N WAVTA va‘vvm \Mf,“vr‘“ l\J\NUli, n!/VAVv"AL\\

N)

‘ Residuals
S
%
=
Z
-
<
=
=
=

|
N]

31 01 02 03 04

Figure 1.12: Trend, seasonality
and residual components for the
bitcoin dataset.

> isstationary(df_test_bitcoin)

Test Statistic is -1.4531293932585607
p-value is 0.5565571771135377

No. lags used = 10

No. observations used = 373

Critical Value (1%) = -3.448003816652923
Critical Value (5%) = -2.86931999731073
Critical Value (10%) = -2.5709145866785503

False

We can see the decomposition in Figure 1.12.

48 J. ROGEL-SALAZAR

1.4.5 Autoregression to the Rescue

So FAR, WE HAVE BEEN doing O.K. with the time series we
have seen. However, we know that simply using a linear or
polynomial fit to the data is not good enough. Furthermore,
we cannot ignore the seasonal variation and the random

noise that makes up the signal.

When we discussed the idea of moving averages, we
considered that a better approach was to see if the next
value in the series can be predicted as some function of its
previous values. A way to achieve this is autoregression. So,
we are therefore interested in building a regression model of
the current value fitted on one (or more) previous values
called lagged values. This sounds great, but how many

lagged values do we need?

Well, we can take a look at the time series and check how
much information there is in the previous values, helping
us with our prediction. We can do this with the help of the
autocorrelation function (ACF) we defined in Equation (1.3).
Similarly, we can look at the partial autocorrelation function
(PACF) which controls the values of the time series at all

shorter lags, unlike the autocorrelation.

The correlation function will test whether adjacent

observations are autocorrelated; in other words, it will help
us determine if there are correlations between observations
land 2,2 and 3, ... n — 1 and n. Similarly, it will test at other
lags. For instance, the autocorrelation at lag 4 tests whether

observations 1 and 5, 2 and 6,... are correlated.

We have seen that using a linear or
polynomial fit is not good for time

series.

Autoregression is exactly what it
sounds like: A regression on the
dataset itself.

This is known as “lag-one

autocorrelation”.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 49

In general, we should test for autocorrelation at lags 1 to
n/4, where n is the total number of observations in the
analysis. Estimates at longer lags have been shown to be

statistically unreliable™®.

We can take a look at the autocorrelation and partial
autocorrelation for the sunspot dataset with the following

code:

sm.graphics.tsa.plot_acf(sun_year, lags=40)

sm.graphics.tsa.plot_pacf(sun_year, lags=40)

Autocorrelation

*Box, G. and G. Jenkins (1976).
Time series analysis: forecasting and
control. Holden-Day series in
time series analysis and digital
processing. Holden-Day

1.0 4

0.8 4

0.6

0.4 4

0.2 4

N

-0.4

Jiilk

Partial Autocorrelation

l T[T JlL
lHl T 7

3‘5 4’0

1.00 1

0.75 4

0.50 4

0.25

0.00 . TITI S) t.te . te o e ¢ o

. 1 v “1‘ - 1‘ 5 l T3

-0.25 4

-0.50 4

-0.75 4 . ; ;
0 5 10 15 20 25 30 35 40

Lags

Figure 1.13 shows the result of the code above. We can see
in the upper panel that the autocorrelation shows a periodic

structure, reflecting the seasonality in the time series.

Figure 1.13: Autocorrelation and
partial autocorrelation for the
sunspot dataset.

50 J. ROGEL-SALAZAR

A similar computation can be carried out for the bitcoin
dataset. The result can be seen in Figure 1.14. As we can see
in the upper panel, the correlation fades slowly as we take

longer and longer lagged values.

It stands to reason that if value 0 is correlated with value 1,
and value 1 is correlated with 2, it follows that 0 must be
correlated with 2. This is why we need the partial
autocorrelation, as it provides us with information about the
relationship between an observation with observations at
prior time steps, but with the crucial difference that the

intervening observations are removed.

Autocorrelation
1.00
0.75 4
0.50 1
0.25 4
0.00

—0.25
—0.50

0 5 10 15 20 25 30 35 40

Partial Autocorrelation

1.0 4
0.8
0.6
0.4
0.2 4

0.0 b TT.- QIO e _oe,2 o Py ael T o

. - o P > -t l - 7o
0 5 10 15 20 25 30 35 40
Lags

Figure 1.14: Autocorrelation and
partial autocorrelation for the
bitcoin dataset.

Partial autocorrelation tells
us about the relationship of
observations with earlier ones,
but without the intervening

observations.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 51

In the examples of the sunspot and bitcoin datasets, we can
see from the lower panels of the correlograms in Figures
1.13 and 1.14 that only the most recent values are really

useful in building an autoregression model.

A PACEF correlogram with a large spike at one lag that
decreases after a few lags usually indicates that there is a
moving average term in the series. In this case, the
autocorrelation function will help us determine the order of
the moving average term. If instead we have a large spike at
one lag followed by a damped oscillating correlogram, then
we have a higher order moving average term. This is the
picture we get from the lower panel of Figure 1.13 for the

sunspot data.

In the case of the correlogram shown in the lower panel

of Figure 1.14, we have a few important correlations in the
first few lags that die out quite quickly. In this case we can
interpret this as having a time series with an autoregressive
term. We can determine the order of this autoregressive
term from the spikes in the correlogram. We will discuss

autoregressive models in the following section.

1.5 Autoregressive Models

AN AUTOREGRESSIVE (AR) MODEL IS a representation of a
type of random process where the future values of the series
are based on weighted combinations of past values. As such,

an AR(1) is a first-order process in which the current value

A correlogram is a plot showing

the correlation statistics.

A large spike followed by damped
oscillations indicates a higher

order moving average term.

A spike on the first lags followed
by not very important ones
suggests the presence of an

autoregressive term.

52 J. ROGEL-SALAZAR

is based only on the immediately previous value:
Ye = Bo+ B1Yi-1 +er (1.8)
An AR(2) process,
Yy = Bo+ P1Yi—1 + P2Yio + e, (1.9)

determines the current value based on the previous two

values, and so on.

It is possible to use autoregression and moving averages in
combination to describe various time series. This
methodology is usually called autoregressive moving
average (ARMA) modelling. In ARMA modelling we use
two expressions to describe the time series, one for the
moving average and the other one for the autoregression.
ARMA(p, q) denotes a model with autoregression of order p

and moving average of order 4.

A further generalisation of an ARMA model is the so-called
autoregressive integrated moving average or ARIMA
model. The AR and MA parts of the acronym follow the
discussion above. The integrated (or “1”) part is perhaps less
clear, but effectively it means that the time series has been
rendered stationary by taking differences. In other words,
instead of looking at the observation Y; we are interested in
Y1 —Yo.

An ARIMA(p, d,q) model puts together all the techniques
we have discussed in this chapter and is specified by three

parameters: p,d, and q, where:

AR(1) model.

AR(2) model.

ARMA - Autoregressive Moving

Average.

ARIMA - Autoregressive
Integrated Moving Average.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 53

* p: Denotes the order of the autoregression
¢ d: Denotes the number of difference levels

* g: Denotes the order of of moving average

We have some commonly used models, such as:

e ARIMA(0,0,0) is simply predicting the mean of the

overall time series. In other words, there is no structure!

e ARIMA(0,1,0) works out the differences (not the raw
values) and predicts the next one without autoregression

or smoothing. This is effectively a random walk!

Let us take a look at applying ARMA and ARIMA models
to the sunspot dataset. For instance we can apply an

ARMA(9,0) model as follows:

arma_sun = sm.tsa.ARMA(sun_year, (9, 0)).fit()
print(arma_sun.params)
const 50.466706
ar.L1.Value 1.161912
ar.L2.Value -0.387975
ar.L3.Value -0.179743
ar.L4.Value 0.148018
ar.L5.Value -0.098705
ar.L6.Value 0.036090
ar.L7.Value 0.014294
ar.L8.Value -0.055000
ar.L9.Value 0.226996

The meaning of the parameters in
an ARIMA (p,d, q) model.

Some common ARIMA models.

The results of applying an
ARMA (9,0) model to the sunspot
dataset.

54 J. ROGEL-SALAZAR

The best model can be found by changing the parameters
p and g of the model such that we minimise any of the
various information criteria such as the Akaike (AIC), the

Bayesian (BIC) or the Hannan-Quinn (HQIC) information

criterion.
print("AIC: ", arma_sun.aic)
print("BIC: ", arma_sun.bic)

print("HQIC:", arma_sun.hqgic)

AIC: 2230.4154805952835
BIC: 2269.792508681132
HQIC: 2246.236568447941

We can also apply an ARIMA model, in this case an
ARIMA(9,1,0):

arima_mod= ARIMA(sun_year, order=(9,1,0)).fit()

> print(arima_mod.summary())

ARIMA Model Results

Dep. Variable: D.Value No. Observations: 264
Model: ARIMA(9, 1, 0) Log Likelihood -1103.368
Method: css-mle S.D. of innovations 15.716
AIC 2228.736
BIC 2268.072

HQIC 2244 .542

See Appendix A for more details

about these information criteria.

Evaluation of the AIC, BIC and

HQIC information criteria.

An abridged version of the
summary provided by the
ARIMA (9,1,0) model applied

to the sunspot dataset.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 55

200

—— Sunspot activity
—=—~- Prediction

175

150 1

=

N

6]
L

Num. of Sun spots
<)
w o

wv
o
L

251

0 4
1970 1980 1990 2000 2010 2020
Year
Figure 1.15: Prediction for
. AP . . . the sunspot activity using an
Finally, it is important to note that in the ideal scenario ARMA(9,0) model.

we would carry out the analysis on a training dataset to
develop a predictive model to be tested against a testing set.
Nonetheless, let us take a look at the predictions we could

draw, in this case for the ARMA model above:

predict_sunspots = arma_sun.predict(’'1980',6\ We can run predictions from the

. dels with th dict method
’2050", dynamic=True) models wi e predict metho

for each of them.

The result can be seen in Figure 1.15 where we can compare
the actual values of the sunspot activity against the
predictions made by the model for the years between 1980
and 2020. Not bad for a model that has not been curated!!

56 J. ROGEL-SALAZAR

1.6 Summary

IN THIS CHAPTER WE ADDRESSED some important aspects of
dealing with time series data and no Jackalope data scientist
must be without this knowledge. We have seen that time
series are different from other data sets due to the time
component. We saw some relevant examples such as the
prices of the Apple Ltd. stock, sunspot activity since the
mid-1700s and even the exchange rate of bitcoins to US

dollars.

We were able to deal with these various datasets thanks

to Python modules such as Pandas and statsmodels. We
saw how Pandas enables us to index our dataframes with
time and looked at appropriate transformations that Pandas
enables us to carry out such as resampling, slicing and

dicing, filtering, aggregating and plotting.

In terms of modelling time series, we covered how moving
averages and exponential smoothing let us get a first
approach at forecasting future values of the series based on
previous observations. We discussed the concepts of
seasonality and stationarity in a time series. We applied
decomposition to our datasets and finally we discussed how
autoregression can be used to model time series, combining

the topics discussed in this chapter.

2

Speaking Naturally: Text and Natural Language

Processing

THERE ARE MANY KINDS OF language: We speak with our
body language, need to “mind our language” in certain
situations, we learn a foreign language to ask for a pain au
chocolat or una cerveza and we need language to understand
a French lecture on Sheep-Aircraft. Indeed we are also
using the Python programming language to create analytics
workflows and train machine learning models. We speak the
“language of love”, and avoid being confusing by speaking
in “plain language”. What about natural language? Have you

heard of it? What is it and when do we use it?

Let us take a step back: The common theme among the
expressions we listed above is communication. In other
words, the different expressions listed use the word language
to emphasise the fact that we communicate with other
humans in a variety of ways. Natural language is one of

those forms of communication. The term refers to the use of

Presented by le célébre Jean-Brian
Zatapathique of course (Baa-aa,

baa-aa).

There are all kinds of languages,

including natural language.

Natural language has evolved
naturally in humans through

continued use.

58 J. ROGEL-SALAZAR

any language that has evolved naturally in humans through

continued use, repetition and adaptation.

English, Spanish, Japanese and Nahuatl are some examples
of natural languages. In contrast, languages like Python,
C++, Scala or Java, as well as Esperanto, Klingon, Elvish or
Dothraki are constructed languages. As you can imagine,
natural language can take different forms such as speech,
writing or even singing. In any case, communicating in a
natural (or constructed) language is a useful, if complex,
task. You may not notice it all the time, but imagine
interviewing a man who speaks entirely in anagrams. The
efforts to make sense out of the conversation would bring

things into focus.

Now, imagine that in your intergalactic travels you
encounter a rebel fleet where R2-D2 and C-3PO are on
board and you have an important message for Princess Leia
Organa. Naturally, you would like to communicate with
them in natural language not in beep-bops. You tell them
your message and they try to make sense of it, reacting
rapidly with excited “Beep-bee-bee-boop-bee-doo-weep”
and “You are quite clever you know... for a human being”.
Off they go to deliver the important information. Not bad...
remember, 3PO alone is fluent in over six million forms of

communication!

The tasks achieved by the loyal androids to take natural
language as input, and make sense out of it are referred to
as natural language processing. Natural language processing

(NLP) is an area of computer science and artificial

These are some examples of

natural languages.

Be ot or bot ne ot, tath is the

nestquoi!

See what I did there!

Natural language processing is
concerned with the interactions
between human language and

computers.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 59

intelligence concerned with the interactions between human
(natural) languages and computers. In particular, the term
refers to the programming of computers for processing and
analysing large amounts of natural language data. Some
typical challenges in the area go from natural language
understanding to speech recognition and even language

generation.

As you can imagine, in order for us to be able to parse,
analyse and understand natural language with the aid of
computers, we need to get hold of suitable data. A rich and
readily available source of information—both for natural
language and other data—is the web. In this chapter we
will see how to extract data from the web using Beautiful
Soup and cover some useful ways to process text data
including the use of regular expressions and tokenisation.
We will then use topic modelling, an unsupervised machine

learning task, to start making sense of natural language.

2.1 Pages and Pages: Accessing Data from the Web

I AM SURE YOU HAVE heard the self-evident truism that
data is everywhere. In the best of cases, it is indeed there, and
it can be used immediately. Unfortunately, in more cases
than not, the data that you want/need/desire is not in the

appropriate format, let alone readily available to you.

A typical situation is for useful data to be displayed in
webpages, but not be downloadable in a useful format. In

other words, being able to see the data is not the same as

Actually this is true not only for

natural language processing.

Remember that seeing the
information is not the same as

accessing it...

60 J. ROGEL-SALAZAR

accessing it. This is indeed a goal of many organisations
interested in open data. Open data refers to data available
to everyone and which can be freely used, re-used and
redistributed, subject only, at most, to the requirement to
attribute and share alike. One of the tenets of open data is
that the data must be available as a whole and at no more
than a reasonable reproduction cost, preferably accessed via

the web in a convenient and modifiable form.

In an ideal scenario, data can be obtained with appropriate
Application Programming Interfaces (APls) to make requests
for example via the HTTP protocol. In these cases you can
use the Requests module! in Python for example. While
the efforts of the open data movement are slowly but surely
making data accessible to all, it is often the case that we still
need to obtain it in a more indirect way such as scraping
the contents of a webpage: We could manually copy and
paste the data but that is as interesting as watching paint
dry. Instead, we automate the process to do this work
programmatically. There are some great modules such as
Scrapy? or Beautiful Soup3 to do this work. In this case we

will obtain some data with the help of Beautiful Soup.

Given the semi-structured nature of the data encountered in
the web, it is necessary for us to determine what
information is relevant to be scraped and whether it
requires multiple pages to be parsed. Typically, we will
need to parse HTML code standard for creating webpages
and web applications. The elements that describe the page
are defined by fags using angle brackets and they may look
like this: <body>...</body>. In this case we have a body tag

Open data is data available to

everyone.

' Reitz, K. Requests - http for
humans. http://docs.python-
requests.org/en/master/

Web scraping extracts or “scrapes”

data from a web page.

2Scrapy. https:/ /scrapy.org
3 Beautiful Soup.

https:/ /www.crummy.com/
software /BeautifulSoup /

HTML stands for Hypertext
Markup Language.

https://www.crummy.com
http://docs.pythonrequests.org
https://www.crummy.com
https://scrapy.org
http://docs.pythonrequests.org

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 61

and the text between <body> and </body> corresponds to the

visible content of the page.

Each tag has opening and closing versions; the closing tag

always precedes the element with a forward slash (/). There

are many other tags such as those shown in Table 2.1.

Tag Description

html HTML document

head Information used by search engines and
browsers.

title The title of the document

body The content of the web page

hi, ha,... Headers: h1 is the main header, then h2, etc.

p Paragraph

div Block of content

a Link

ol Ordered list

ul Unordered list

il List item inside an ol or ul tag

table Table

tr Table row

th Table header

td Table data cell

Once we have determined the data that we are looking for,

we need to:

1. Read the HTML page

2. Parse the raw HTML string into a nicer more readable

format

3. Extract the information we are interested in

Table 2.1: Common HTML tags.

Beware old Jedis warning you that
“These are not be the datasets you

are looking for”...

Steps for web scraping the data we

are interested in.

62 J. ROGEL-SALAZAR

4. Process our data, i.e., clean it, make any appropriate

transformations, etc.

5. Store, print, save, and take some actions with the data at
hand

Let us take a look at a very small, simple HTML document:

<!DOCTYPE html>
<html>
<head>
<title>Page Title</title>
</head>

<body>
<h1l>My First Heading</hl>
<p>My first paragraph.</p>
</body>
</html>

If you save that piece of code in a text file and open it in
a browser, it will look similar to the screenshot shown
in Figure 2.1. We can see at the top of the page the tab
with the page title, and then the main header followed
by a paragraph. It is not the most exciting website, but it

provides us with a flavour of what is to follow.

One of the main things we need to take into account when
scraping the web for data are the terms and conditions

of the site. In some cases website owners do not permit

automated systems or software to extract data. The methods

shown here are in no way an encouragement to abuse terms

A very simple HTML document
with a title, a headline and

a paragraph marked with
appropriate tags.

’

Make sure you check the sites

terms and conditions.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON

m Page Title

My First Heading

My first paragraph.

and conditions placed by websites. Please make sure that

you:

* Respect the Terms of Service (ToS)

¢ Use an API if one is provided, instead of scraping data
* Respect the rules of robots.txt

¢ If ToS or robots.txt prevents you from crawling or
scraping, ask a written permission to the owner of the

site, prior to doing anything else

* Do not republish your crawled or scraped data or any
derivative dataset without verifying the license of the
data, or without obtaining written permission from the

copyright holder

The other thing that you need to consider when obtaining

data from webpages is the fact that the sites you are getting

the data from may change from time to time. The design
may be different, the position of the data in the page will

move, the tags may have different metadata, there may be

pagination to consider, or simply the page may vanish into
thin air. You will have to be prepared to change your code

accordingly if you are to obtain your data programmatically.

Consider yourself forewarned.

Figure 2.1: A very simple
webpage.

Robots.txt is a text file that
instructs web robots (such as
search engines) how to crawl

pages on a website.

And will definitely change!

63

64 J. ROGEL-SALAZAR

2.1.1 Beautiful Soup in Action

Now THAT WE HAVE A better understanding of the task
we need to accomplish, let us take a look at obtaining some
data from a website. In order to make the task reproducible,

I have created a webpage and made it available off-line.

The page can be found at* https://doi.org/10.6084/ 4+ Rogel-Salazar, . (2018¢, Sep).
. Iris Webpage. https://doi.org
m9.figshare.7053392.v4 as an HTML document. For the /10.6084/ma.figshare.7053392.v4

purposes of this book, we will work with a local copy of the
page, but you can get content live from the web too. I will

point out the way to do this as we go along.

Iris Flower Dataset

This is one of the best known datasets in data science and it is fair to say it has become a canonical example in the
training of new data scientists.

The data set contains 50 instances of 3 classes of 50 iris plants. One of the classes is linearly separable from the
other 2, and these in turn are not linearly separable from each other.

Attribute Information:

. sepal length in cm

. sepal width in cm

. petal length in cm

. petal width in cm

. class: -- 3 values: Iris Setosa, Iris Versicolour, Iris Virginica

h B W b

‘We have used this dataset in Chapter 3 of Data Science and Analytics with Python [1].

Dataset Order|Sepal length|Sepal width|Petal length|Petal width
1

5.1 35 1.4 0.2 I. setosa
2 49 3 1.4 0.2 |. setosa
3 47 32 1.3 0.2 |. setosa

Figure 2.2: A preview of the Iris
HTML webpage.

Back to our Iris Flower Dataset webpage: If you were to

double click on the HTML document in your file system, it

https://doi.org/10.6084/m9.figshare.7053392.v4
https://doi.org/10.6084/m9.figshare.7053392.v4
https://doi.org/10.6084/m9.figshare.7053392.v4
https://doi.org/10.6084/m9.figshare.7053392.v4

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 65

will automatically be opened in your browser and will look
similar to the screenshot in Figure 2.2. Our task is to extract
successfully the table in the page that contains the 50 data
points in the set. In order to accomplish our task, we will
need to look into the source code that generates the page.

The first few lines look like this:

<!DOCTYPE html> The first few lines of the Iris
HTML webpage. Notice the use

<html class="client-nojs" dir="1tr" lang="en"> of tags marking the different

<head> elements of the page.
<meta http-equiv="content-type" content=
"text/html;
charset=windows-1252">
<title>Iris flower data set</title>
</head>
<body class="qt-body">
<hl id="firstHeading" class="firstHeading">
<i>Iris</i> Flower Dataset
</hl>
<div id="bodyContent" class="mw-body-content">
<p>This is one of the best known datasets in
data science and it is fair to say it has
become a canonical example in the training of

new data scientists.</p>

We need to be able to read the source page and parse it
so that we can make sense of its contents thanks to the We can now use Beautiful Soup to
tags provided. The first thing we will do is open the page. parse the HTML source code.

Here, I am assuming that the HTML file is saved locally in

66 J. ROGEL-SALAZAR

your machine with the name iris_page.html. We can ask

Beautiful Soup to read and parse the HTML page as follows:

from bs4 import BeautifulSoup

fname = ’'iris_page.html’

iris_soup = BeautifulSoup(open(fname), ’'lxml’)

The third line above takes the HTML string to be parsed
and the name of the HTML parser to use. In this case we are
using 1xml and Beautiful Soup supports the parser included
in Python’s standard library, html.parser as well as others

such as html51ib.

In a more realistic situation, you may not have a local
version of the HTML page. Instead you would find the page
directly in the web. In this case, first you will need to do a
request to the URL of the page and parse the result, as

follows:

from urllib.request import urlopen
from bs4 import BeautifulSoup
wp="http://wikipedia.org/wiki/Iris_flower_data_set’

pageSource = urlopen(wp).read()

IrisSoup = BeautifulSoup(pageSource, ’lxml’)

We are using urlopen to request the URL of the page we are
interested in and pass the result as the HTML string that

Beautiful Soup will parse. Neat!

Make sure you provide the

appropriate path.

In this case the string to be parsed
is the HTML file.

We can parse HTML source code
directly from live URLs in this

way.

http://wikipedia.org

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 67

html
1
head body
—= 5
| title | | meta |
@ O
| "Iris flower dataset” | | "Iris Flower Dataset” |
| This is one of the best known...
Figure 2.3: A schematic
Beautiful Soup has parsed the HTML and has enabled us representation of HTML as a
tree. We are only showing a few of
to make sense of the structure of the page. We can think the branches.
of HTML as a tree (see Figure 2.3) with different types
of objects. The objects that Beautiful Soup returns to us
include:
* Tags: Beautiful Soup objects that correspond to the actual
tags in the original HTML. Tags have attributes and
methods
* Navigable strings: Correspond to the text within a tag Beautiful Soup objects include

tags, navigable strings, comments
* Comments: A special type of navigable string to support and a Beautiful Soup object.

comments in the original HTML

* Beautiful Soup: Represents the document as a whole. It

can be searched and navigated

Let us take a look at the Iris webpage soup we have in our Bowl?... May be better!

hands. We can check the type of object in the usual manner:

68 J. ROGEL-SALAZAR

> type(iris_soup)

We obtain a Beautiful Soup object

, when parsing our HTML file.
bs4.BeautifulSoup

It is, as we can see, a Beautiful Soup object. It holds

information about the original HTML document:

> print(iris_soup.name)

[document] The object has information about
the tags in the HTML.

> print(iris_soup.title)

<title>Iris flower dataset</title>

We can see that the name of the object is “document” and
we can start looking at the different tags inside the Iris
beautiful soup. In the code above, we are requesting the title

of the website. Note that the output is a tag object:

> type(iris_soup.title)
We can refer to the tags directly by
using their names.

bs4.element.Tag

In this case the tag is a “title” tag as we can easily verify
directly in the HTML source. What about if we are
interested in the actual title, i.e., the string inside the tag?
Well, all we need to do is request the string of the tag as

follows:

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 69

> print(iris_soup.title.string)

Iris flower dataset

> type(iris_soup.title.string)

bs4.element.NavigableString

Et voila! Notice the type of object that is returned by the
string method for the tag: It is a navigable string. The
string method returns a single string within a tag. In other
words, if the tag has a single string child, then the returned
value will be that string. However, if the tag has no children,

or more than one child, the value returned will be None.

In cases where the tag contains no children or more than
one child, it is useful to know that you can use a text
method which will return all the child strings concatenated.
Let us look at an example: In our Iris dataset website, the
first heading contains a string that reads “Iris Flower
Dataset”, with the first word in italics (see Figure 2.2). In
HTML this is created with an i tag. Let us look at the

contents of the heading with Beautiful Soup:

> iris_soup.hl.contents

[<i>Iris</i>, 'Flower\n Dataset\n ']

The object returned is a list with two elements. This means
that the tag has effectively two children: The first one is a

tag, and the second one is a string. If we were to ask for the

It is possible to extract the strings

inside a tag.

Remember the tree structure of the
HTML code when we talk about

parents and children!

Notice that the result here is a list.

70 J. ROGEL-SALAZAR

string on this h1, we will get nothing. Instead we should be

asking for the text as follows:

> iris_soup.hl.text

'"Iris Flower \n Dataset\n’

Notice that the returned text has some white spaces
including special characters such as the \n. We can clean
these by replacing the spaces or using regular expressions
for example. Beautiful Soup offers the possibility of
stripping leading and trailing whitespaces with the help of

the stripped_strings generator:

> for ss in iris_soup.hl.stripped_strings:

print(repr(ss))

"Iris’

"Flower\n Dataset’

We may still have to do some cleaning on the result. For
example, in the example above we still have the line feed

control character \n.

Let us now take a look at other parts of our soup. For

example, let us look at the first div tag:

firstdiv = iris_soup.div

We are storing the content of the div in a variable we can

later use:

The text method returns all the

child strings concatenated.

See Section 2.2 for more
information about regular

expressions.

Think of a generator as a function
that “generates” values on the fly.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 71

> firstdiv

<div class="mw-body-content" id="bodyContent">
<p>This is one of the best known datasets in data
science and it is fair to say it has become a
canonical example in the training of

new data scientists.</p>

<p>The data set contains 50 instances of 3 classes
of 50 iris plants. One of the classes is linearly
separable from the other 2, and these in turn are
not linearly separable from each other.</p>

</div>

We can see that there are two paragraphs inside the div. We
can search the contents of the different tags with the help of
methods such as find and find_all. Let us get the string of

the first paragraph:

> paragraph = firstdiv.find(’'p’)

> paragraph.string

'This is one of the best known datasets in data
science and it is\n fair to say it has become
a canonical example in the training of\n new

data scientists.’

The find method has enabled us to search for the first

instance of the p tag. In contrast, we can use the find_all

method to obtain all the instances inside a list. Notice that

This particular div contains two
paragraphs, denoted with <p></p>
tags.

The find method locates the first

instance of the tag searched.

72 J. ROGEL-SALAZAR

find_all lets us search for multiple tags. For instance, if we

wanted all the paragraphs and list items in the document,

we can type the following:

> iris_soup.find_all(["p", "1i"])

[<p>This is one of the best known datasets in data
science and it is fair to say it has become a
canonical example in the training of new
data scientists.</p>,
<p>The data set contains 50 instances of 3 classes
of 50 iris plants. One of the classes is linearly
separable from the other 2, and these in turn are
not linearly separable from each other.</p>,
sepal length in cm </1i>,
sepal width in cm </1i>,
petal length in cm </1i>,
petal width in cm </1i>,
class: -- 3 values: Iris Setosa, Iris
Versicolour, Iris Virginica </1li>,
<p id="rogell">[1] Rogel-Salazar, J.
(2017). <i>Data Science and Analytics with
Python</i>. Chapman & Hall/CRC
Data Mining and Knowledge Discovery Series.
CRC Press. <meta content="text/html;

charset=utf-8" http-equiv="Content-Type"/></p>]

It is possible to use the parameter limit in combination
with the find_all method to limit the number of results
returned. This is particularly useful when there is a large

number of entries searched.

The find_all method locates all
the instances of the tag searched

and returns a list.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 73

Combining our search with filtering parameters is a great
way to hone in on the information we are looking for. We
can for example determine that we want all the paragraphs

that have a particular identifier or id:

> bib = iris_soup.find_all(’p’, id="rogell’)
> print(bib) We can use parameters to search
for specific tags. In this case for
instance we are searching for a

<p id="rogell">[1] Rogel-Salazar, J. particular id.
(2017). <i>Data Science and Analytics with
Python</i>. Chapman & Hall/CRC
Data Mining and Knowledge Discovery Series.
CRC Press. <meta content="text/html;

charset=utf-8" http-equiv="Content-Type"/></p>

In this case, we are looking for all the paragraphs with
the id rogell and we can see that the result is one single
paragraph. Please note that the returned object is a list
of tags. If we wanted to get the text of the first (and only)

element in the list, we can do this with:

> my_text = bib[0].text The list elements are tag objects.

As we have seen, HTML organises the contents of our

webpage. Sometimes, it is useful to define consistent style

elements for different elements of the page under a single

name. This is what a class attribute is used for in HTML. Remember that class is a reserved
We know that Python is an object-oriented language and word for both HTML and Python.
as such it enables us to create “templates” to create objects.

So what happens when we need to look for a class attribute

74 J. ROGEL-SALAZAR

in our Beautiful Soup with Python? Well, since class is a
reserved word in Python we simply append an underscore

to the HTML attribute as such: class_.

We have enough information for the big finale of this
section: Obtaining the table of data in the Iris website.
Inspecting the source code for the page, we can see that the
tag that holds the dataset is a table of class
tableizer-table. We can use this information to find the

table and parse it:

iris_table = iris_soup.find(’'table’,

class_='tableizer-table’)

From Table 2.1 we know that a well-formed HTML table
contains rows in tr tags, and the data cells in td tags. Let us

locate all the table rows to start with:

tmp = iris_table.find_all(’'tr’")

This returns a list with all the relevant tags. In particular the
first element contains the header of the table and the rest of

the elements correspond to the rows of the dataset:

first = tmp[0]
allRows = tmp[1:]

We can now extract the text inside each of the data cells. In
the case of the header, the tag is actually a table header, i.e.,
th.

Note that we are using the
parameter class_ in the code

below.

Too many tables!! I can assure
you there is no chance we may
encounter Mr. Creosote in any of

them.

Remember how we can slice and

dice a list using the colon notation.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 75

headers = [header.text for header in\
first.find_all(’th’)]

> headers

['Dataset Order’,
'Sepal length’,
'Sepal width’,
"Petal length’,
"Petal width’,

"Species’]

In the code above, we are using a Pythonic way to extract
the relevant information: List comprehension. We traverse
the list returned by find_all and extract the text as we go

along, each entry is then stored as an element of a list.

As for the values, they are stored in td tags and we can use

a similar technique as in the code above:

values = [[data.text for data in\
row.find_all(’'td’)] for row in allRows]

> values|[:2]

[r'r', 's.1’, '3.5", '1.4', '0.2', 'I.\xa0Osetosa’],
['2", '4.9", '3'", '1.4", '0.2', 'I.\xa0Osetosa’']]

Note that the information extracted is actually of string type.

This is important in those cases, such as here, where some
of the data is numerical, and thus we may have to carry
out appropriate manipulations; for example, cleaning the

nonbreakable space characters shown as \xa0.

We are using list comprehension
to extract the relevant text from
the th tags.

We use the same technique as

above for the actual table contents.

76 J. ROGEL-SALAZAR

Let us show some manipulations we can easily implement

loading the data into a Pandas dataframe:

import pandas as pd

df = pd.DataFrame(data=values, columns=headers)

Et voila! We are now in a position to use our dataset for

other purposes, such as in a classification algorithm as

done in Chapter 3 of Data Science and Analytics with Python>.

But before we do that, let us make some minor changes
in our dataset. For example, we can convert the columns

containing numbers as strings into actual numbers:

cols = ['Dataset Order’, ’'Sepal length’,
'Sepal width’, ’'Petal length’, ’Petal width’]
df[cols] = df[cols].apply(pd.to_numeric,

errors='coerce’)

We can also clean the strings in the species names. You may

have noticed in the code shown on page 75 that there are
some strange characters in the species names. Namely, the
non-breakable space encoded in latinl: \xa@. Let us clean

up these spaces:

df[’'Species’] = df[’'Species’].map(lambda x:
x.replace('\xa0@’," "))
df[’'Species’] = df[’'Species’].map(lambda x:

x.replace('\n’,""))

We are simply replacing the nonbreakable spaces with

blanks in the first line of the code above. In the second one,

we are replacing the new line character with nothing.

5 Rogel-Salazar, J. (2017). Data
Science and Analytics with Python.
Chapman & Hall/CRC Data
Mining and Knowledge Discovery
Series. CRC Press

We will cover the use of regular
expressions for this sort of task in

Section 2.2.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 77

2.2 Make Mine a Regular: Regqular Expressions

HAVE YOU EVER HAD THE need to determine a pattern in I am sure you have! Particularly
if, like Mr. Bounder, you need to
replace the letter “C” with “K”

to get the right pronunciation of

a piece of text, or in data in a table and either extract the
regular pattern or even remove it? Sometimes, it is possible
to simply scan the document in question and manually find some words.
the expression of interest. In many cases, different programs

enable the use of search and replace functions and they are

all the rage. However, there are times when the expression

we are seeking to process is more complex to be handled

with a simple search.

Welcome to the world of regular expressions! As the name
implies, a regular expression is an utterance (typically in
text form) that appears in a corpus with certain frequency or A corpus is a large and structured

regularity. Recognising those patterns in the corpus relies set of texts upon which linguistic

analysis can be performed.
on determining the characters that make up the expression,
including letters, digits, punctuation and any other symbol,
including special characters and even in other scripts, such
as the Japanese sentence in the margin, as well as many C PO HAGEDE.

others like Chinese, Arabic or Devanagari for example.

In Python, the re module enables us to use regular

expressions. When working with Python strings which will

be parsed with regular expressions, it is recommended to

use raw strings. This is because in raw strings, backslashes A raw string in Python is

. . ded b h r’Thi
have no special meaning as an escape character. Anyway, we =~ Prececeq by an rassuci THnLs

is a raw string.’
mentioned above that a simple search and replace function
can be used to substitute a desired pattern, let us take a look

at implementing this use case with re.

78 J. ROGEL-SALAZAR

Imagine you are reading the following options from your

local award-winning Viking Café:

Breakfast options:

=

. Egg and baaacon - £10.0 ($12.83);

Egg, sausage and baaaaacon - £11.0 ($14.12);
Egg and beans - £12.0 ($15.40);

Egg, baaacon and beans - £13.0 ($16.68);
Beans, sausage, beans - £14.0 ($17.97);

Beans, baaaaacon, beans, tomato and beans - £15.0
($19.25);

That new Commis Chef is at it again! Doesn’t she/he know

that your speciality is wonderful Spam? We need to take

action immediately and change the menu before the Vikings

come in. Let us fire our Python engines and read each of the

lines in the corpus above. We will then use the sub method

to substitute the word “beans” for “spam”. We will deal

with the extra bacon — the surplus letter “a” — later.

1.
2
3
4.
5
6

import re

corpus = r"""Breakfast options:

Egg and baaacon - £10.0 ($12.83);

. Egg, sausage and baaaaacon - £11.0 ($12.83);
. Egg and beans - £12.0 ($15.40);

Egg, baaacon and beans - £13.0 ($16.68);

. Beans, sausage, beans - £14.0 ($17.97);

. Beans, baaaaacon, beans, tomato and beans -

£15.0 ($19.25); """

The famous Viking Café menu,

sans Spam...

We need to replace the word

“beans” with “spam”.

The string could be stored in a file.
In this case we are defining a raw

string: Notice the r at the start.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 79

for line in corpus.splitlines():
line = re.sub(’'beans’, 'spam’, line.rstrip())

print(line)

As you would expect, after running the code, the printed

new lines will have changed the word “beans” for “spam”:

Breakfast options:

1. Egg and baaacon - £10.0 ($12.83);

2. Egg, sausage and baaaaacon - £11.0 ($12.83);

3. Egg, and spam - £12.0 ($15.40);

4. Egg, baaacon and spam - £13.0 ($16.68);

5. Beans, sausage, spam - £14.0 ($17.97);

6. Beans, baaaaacon, spam, tomato and spam - £15.0

($19.25)

But what about lines 5 and 6 where the word “Beans” has
not been changed? Well, the reason is that in those cases
the capital “B” does not match the lower case “b”. We shall

address how to deal with this issue in the next subsection.

Also, note that we have not changed the text in the corpus
variable; we simply took the text and made on-the-fly
modifications. If we need to keep the changes, we need to

make sure that the new lines are stored somewhere.

2.2.1 Regular Expression Patterns

As YOU CAN SEE, LOOKING for sequences of characters is

pretty straightforward as most characters match themselves.

Sounds obvious, right? However, there are some exceptions:

The sub method enables us to

make substitutions in the string.

The famous Viking Café menu,

with wonderful Spam...

As well as with the misspelling of

the word “bacon”.

This is a nice task for you to
complete now, Mr./Ms. Commis
Chef!

Exceptions include control
characters suchas+ 72 . *

{rs OTLT N\

80 J. ROGEL-SALAZAR

These characters can be matched by “escaping” them with
the help of a backslash (\). In Table 2.2 we are listing the

use of these characters to match patterns in a string.

Table 2.2: Regular expression

Pattern Description patterns. We use ellipses (. ..) to
denote sequences of characters.

"L Starts and ends
* Zero or more repetitions
+ One or more repetitions

Optional character
Any character

abc. .. Letters

123... Digits

\d Any digit

\D Any non-digit character

[abc] Only a, b, or c

["abc] Not a, b, nor ¢

[a-z] Characters a to z

[0-9] Numbers 0 to 9

\w Any alphanumeric character
\W Any non-alphanumeric character
{m} m repetitions

{m,n} m to n repetitions

\s Any whitespace

\S Any non-whitespace character
[...] Character sets

(...) Capture group

(:72...) Non-capture group

(a(bc)) Capture sub-group
(.x) Capture all
(123]abc) Matches 123 or abc

The re module we encountered previously supports two We can use match or search with

different ways to find patterns using regular expressions: the re module.

match and search. The first one matches only at the

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 81

beginning of a string, whereas the second one searches for a
match anywhere in the string. If you are interested in using
a single regular expression multiple times, you may want to

use the compile method to be used with match and search.

OK, so we are ready to start matching some patterns in our
Viking Café menu. We can match lines beginning with a

number using an expression such as:

’ ’ ’ ’ ’ ’
~1', ~2', ..., 76

What about if we are interested in a more general
expression that captures a line starting with any number?
From Table 2.2 we can see that the pattern \d matches any

digit!

!/\\dl

So we can actually write the following to print all the lines

that start with a number:

numlines = re.compile(’'”™\d’")

for line in corpus.splitlines():
result = numlines.search(line)
if result:

print(line)

Try it out and convince yourself that the outcome is as
expected. Note that this only works for strings that begin
with the pattern provided.

We can also search for lines ending in a particular pattern.

In this case, we need to use the dollar sign ($). For example,

We can use compile in cases where
we need to use an expression

multiple times.

The caret symbol (*) matches
a pattern at the beginning of a

string.

\d matches any single digit.

This piece of code prints lines
in the corpus that begin with a

number.

82 J. ROGEL-SALAZAR

if we wanted to print only the lines that finish with a closing
parenthesis, we will have to write the following regular

expression:

endparenthesis = re.compile(’\)$’)

Note that we need to “escape” the closing parenthesis, i.e.,
\), to match expressions containing that character. The same
behaviour applies to any of the other control characters we

have described above.

Remember the task we were trying to accomplish in the
last section? We were interested in replacing all the “beans”
for “spam”, but capitalised words were not replaced. One
way (among many) to deal with this is the use of character
sets such that we search for the word “bean” spelled either
with “B” or with “b”. We can do that with the following

expression ' [Bb]eans’

> for line in corpus.splitlines():
line = re.sub(’[Bbleans’, 'spam’, line.rstrip())

print(line)

Breakfast options:

1. Egg and baaacon - £10.0 ($12.83);

2. Egg, sausage and baaaaacon - £11.0 ($12.83);

3. Egg and spam - £12.0 ($15.40);

4. Egg, baaacon and spam - £13.0 ($16.68);

5. spam, sausage, spam - £14.0 ($17.97);

6. spam, baaaaacon, spam, tomato and spam - £15.0

($19.25)

The dollar sign ($) matches a

pattern at the end of a string.

The square brackets represent
character sets, the pattern [123]
matches a single 1, 2 or 3 and
nothing else. It is possible to
match sequential characters: [0-9]
will match a single digit between 0
and 9.

In this case we are using [Bb]eans
to match the words “beans” or

“Beans”.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 83

What about if we wanted to match all the words that started
with the letter “b”, either capital or lower case? We can The pattern \w matches any
achieve this with the help of \w which matches any alphanumeric character.
alphanumeric character. In order to ensure that we capture

words of any length, we can use the + character that will

match one or more repetitions. This leaves us with the Whereas the + matches one or

) . more repetitions of a character.
following expression:

bwords = re.compile("[Bb]\w+")

Let us use this compile regular expression with another
great method in the re module: findall which will return a

list with all the matches for the pattern provided:

> bwords.findall(corpus)

We find all the matches for words
['Breakfast’, 'baaacon’, ’baaaaacon’, starting with "B or *b"
"beans’, 'baaacon’, ’'beans’,

'Beans’, 'beans’, ’'Beans’,

"baaaaacon’, ’'beans’, ’beans’]

Not bad, eh? We can use the repetition to capture all those

misspelled “bacons”:

> re.findall('ba+\w+’, corpus)
Here we look for all the words

that have a “b” followed by any
["baaacon’, ’'baaaaacon’, ’'baaacon’, ’'baaaaacon’] number of letters “a”.

In this case we are searching for all the words that have the
letter “b” followed by any number of letters “a”, and any
number of other characters. We can also specify the number

of repetitions as follows:

84 J. ROGEL-SALAZAR

re.findall(’'ba{3,5}con’, corpus)

"

In this case we are looking for repetitions of the letter “a

between 3 and 5 times followed by the letters “con”.

For the next pattern, let us get the prices in sterling from the
menu. We are interested in the figures after the pound
sterling symbol (£), so we will use the parentheses to

capture the group (see Table 2.2).

> re.findall(’£(\d+\.0)', corpus)

['10.0", '11.0', '12.0", '13.0', '14.0', '15.0’']

Here we are looking for any number of digits (\d+) followed
by a dot (\.) and a zero. Notice that we enclose the
expression in parentheses to capture only the information
required, leaving out the pound symbol. For the prices in
dollars, we need to make sure to escape the dollar sign and

the parentheses:

> re.findall(’\ (\$(\d+\.\d+)\)’, corpus)

['12.83", '12.83', '15.40', '16.68', '17.97’,
'19.25"]

Finally, let us use the capture sub-group to get both prices at

the same time:

prices = re.compile(’ (£(\d+\.0) \(\$(\d+\.\d+)\))")

captures = prices.findall(corpus)

The use of parentheses lets us
specify a group in the pattern that

we are interested in extracting.

We use \. to specify a dot in
the pattern. On its own, a dot is
a wildcard that represents any

character.

We need to escape both the dollar
sign ($) and the parentheses.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 85

The result will be list with tuples containing a match for the

entire expression (e.g., '£10.0 ($12.83) '), a match for the We can use the sub-group pattern
first sub-group (e.g., '10.0") and a match for the second (a(be)) to capture multiple
groups of interest.

sub-group (e.g., '12.83"). We can then use the resulting list

for our own purposes, for example:

> for capture in captures:
print(’{0} in pounds and {1} in dollars’.
format(capture[l], capture[2]))

10.0 in pounds and 12.83 in dollars
11.0 in pounds and 12.83 in dollars
12.0 in pounds and 15.40 in dollars
13.0 in pounds and 16.68 in dollars
14.0 in pounds and 17.97 in dollars
15.0 in pounds and 19.25 in dollars

The Commis Chef can now use her/his newly acquired

knowledge of regular expressions to fix the menu:

fix_bacon = re.compile(’ba+con’)
fix_spam = re.compile(’[Bb]leans’)

) This is one way the Commis Chef
new_corpus =

can fix the menu!
for line in corpus.splitlines():
line = fix_bacon.sub(’bacon’, line)
line = fix_spam.sub(’spam’, line)

new_corpus += line

First we create regular expressions to find the misspelled
words with multiple letters “a”, then one to find the words

“beans” and “Beans”. We then parse each line making

86 J. ROGEL-SALAZAR

appropriate replacements and saving the new fixed lines in

a new corpus.

> print(new_corpus)

Breakfast options:

1. Egg and bacon - £10.0 ($12.83);

2. Egg, sausage and bacon - £11.0 ($12.83);
3. Egg and spam - £12.0 ($15.40);

4. Egg, bacon and spam - £13.0 ($16.68);

5. spam, sausage, spam - £14.0 ($17.97);

6. spam, bacon, spam, tomato and spam - £15.0

($19.25)

It is not quite perfect yet, as we have some instances of

“spam” that should really be capitalised, but getting there.

Check out re’s documentation for further information®,
as there are many more things you can do with regular
expressions. Python also has other tricks under its sleeve.

For example, there are some flags that you can set:
* re.IGNORECASE: case insensitive pattern matching

* re.DOTALL: Make the special character . match any

character including newline (\n)

® re.MULTILINE: make " and $ match at the beginning/end

of the string and of each line

Do not be discouraged by how cryptic some of the regular
expressions seem to be. The vast majority of us will

probably not become master regex ninja Jackalopes, but

Et voila!

®re - Regular

expression operations.

https:/ /docs.python.org/3.6/
library/re.html

Some flags you can set to be used

with your regular expressions.

https://docs.python.org/3.6/library/re.html
https://docs.python.org/3.6/library/re.html

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 87

with the help of a cheat sheet like Table 2.2 and an online
tester such as https:/ /pythex.org or https://regexio1.com,

we can all find the perfect match.

There are some interesting attempts to make readable and
maintainable regular expressions such as cursive_re for

Python 3.6 and up?. For instance, matching the prices in 7 Cursive Re.
https:/ /github.com/Bogdanp/

sterling from our Viking Café menu can be achieved as cursive_re

follows with cursive_re:

import cursive_re as cre
pound = cre.text('£")
pndnum = pound + cre.group(cre.one_or_more(

cre.any_of(cre.in_range(’'0’,'9"'))) +

cre.text('.0"))

In the second line above, text matches the given string

exactly, escaping any special characters. The any_of function Cursive Re provides a number of
. L functions that attempt to mak
matches any of the given characters and in this case they unetions that attempt to make
regular expressions easier to read
are characters in the range from 0 to 9. Since we want one

and maintain.
or more of these digits, we use the one_or_more function.

Finally, the group function lets us define the group whose

contents we want to retrieve. We can see the result of these

commands by casting the result as a string;:

> str(pndnum)

"\N\E£([0-9]+\\.0)"’

We can compile the expression into a real regular expression

and use it as normal:

https://github.com
https://github.com
https://regex101.com
https://pythex.org

88 J. ROGEL-SALAZAR

> testing = cre.compile(pndnum)

> testing.findall(corpus)

['le.0', '11.0’, '12.0', '13.0', '14.0’, '15.0']

2.3 Processing Text with Unicode

WHEN DEALING WITH TEXT DATA, it is unavoidable to
consider the characters that we use to represent words. We
rarely think about this, but ever since we start learning how
to read and write, we are encoding information particular to
the natural language we use in our everyday lives. You are
able to read these lines of text because you are familiar with
the Latin alphabet with 26 characters that is used in English,
but that is not the whole story. Si leyeras estas lineas en
Espaﬁol necesitarias 27 caracteres, mds vocales acentuadas como:
d,é 1,6, 1u, &ii. Other languages have their own letters and
they all need to be encoded so that they can be represented

by your computer.

For many decades, computers were able to represent
characters based on the American Standard Code for
Information Interchange standard, better known as ASCII,
first proposed in the early 1960s®. ASCII defines 256
characters using 8 bits to encode characters including the
usual printable ones in a Latin alphabet including accented
vowels and other characters such as ¢, 8 and i (among
others), plus some control characters such as carriage return,

line feed, etc.

If you were reading these lines
in Spanish you would need 27

characters plus accented vowels.

8 Russell, A. (2014). Open Standards
and the Digital Age. Cambridge
Studies in the Emerg. Cambridge
University Press

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 89

All this is well and good, but what happens with languages
that do not use the Latin alphabet such as Japanese, Chinese,
or Greek? ASCII would not be able to accommodate these
scripts and thus we need a new character set. Welcome to

Unicode!

Unicode does not have every imaginable character in it,
but at least in version 11.0 there are 137,375 characters
including 146 different scripts and even emojis®. This all
makes sense and you would think that this is the end of
the story, right? Well, you will be surprised to see the “It’s...
not”. There are different ways to implement Unicode such
as the Unicode Transformation Format (UTF), and the
Universal Coded Character Set (UCS).

Let us take for instance UTF encoding. If we chose to use

8 bits to do the encoding we would end up with UTF-8,
which offers great compatibility with ASCII. Alternatively,
we can use 16 bits and end up with UTF-16. There are other
mappings out there, including UTF-32, UTF-7, etc. As you

can imagine, dealing with encodings can be a bit tricky.

In Python 3, all text is Unicode'®, but it is important to
remember that encoded Unicode is represented by binary
data. This is one of the main differences with Python 2.7.
Python 3 has one text type, i.e, str which holds Unicode
data, and there are two byte types bytes and bytearray. Let
us take a look at some of this. For example, let us define a

string in Python and look at its type:

Languages with non-Latin scripts

are not supported in ASCIL

9 Unicode 11.0.
http:/ /www.unicode.org/
versions/Unicode11.0.0/

No need to run in from the sea to

tell you this.

Some common encodings include
UTEF-8 and UTF-16.

° yvan Rossum, G. (2009). Text Vs.
Data Instead of Unicode Vs. 8-bit.
https:/ /docs.python.org/release/3.0.1/
whatsnew/3.0.html

https://docs.python.org/release/3.0.1/whatsnew/3.0.html
http://www.unicode.org
https://docs.python.org/release/3.0.1/whatsnew/3.0.html
http://www.unicode.org

90 J. ROGEL-SALAZAR

> type('Hello world!’)

str

It is indeed an object of str type, or a string. What about if
we want to define a bytes literal? Well, we can simply prefix

the string with a b:

> type(b’Hello world!’)

bytes

Let us try to define a byte object containing non-ASCII

characters:

> type(b’ CAICHITHEHA! ")

SyntaxError: bytes can only contain ASCII literal

characters.

This error tells us that we will need to transform our string
with non-ASCII characters into a bytes object first, and we

will need to provide an encoding to do this:

> sekai = 'ZAICHIIHF

> bytes(sekai, 'utf-8')

b’\x81\x93\xe3\x82\x93\xe3\x81\xab\xe3\x81\xal\xe3

\x81\xaf\xe4\xb8\x96\xe7\x95\x8c\xef\xbc\x81"’

There is no easy way to determine what type of encoding is

used in byte strings. In Section 2.1.1 we learnt how to scrape

A string is indeed a string.

We can define a bytes literal with
the b prefix.

In this case, we are printing “Hello
world!” in Japanese!

When casting as a bytes literal
we need to specify the desired

encoding.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON O1

a website, and in reality we need to check what encoding
is used for the strings we are getting from the web. That
is true of any other processing we need to carry out with

strings.

After the operation above is executed, we have a bytes
object encoded in UTF-8. Another, and probably better, way

to do this is to use the encode method for strings:

> sekai.encode()

b’\x81\x93\xe3\x82\x93\xe3\x81\xab\xe3\x81\xal\xe3
\x81\xaf\xed\xb8\x96\xe7\x95\x8c\xef\xbc\x81’

As you can see, we have obtained the same result as before,
please note that by default Python 3 uses UTF-8 for
encoding. Should we need to use a different encoding, we
simply pass it to the method. For example, we can encode

our string in UTF-16 as follows:

> sekai.encode(’'utf-16")

b’ \xff\xfeS0\x930k0a0o0\x16NLU\XO1\xff’

As you can imagine, it is possible to do the reverse

operation and decode bytes objects too:

> japan = b’'\xe6\x97\xa5\xe6\x9c\xac’

> japan.decode()

IEIZIK/

It is best practice to specify the
encoding when reading files, but it
may not be that easy to tell what

encoding has been used.

A better way to deal with the
encoding is to use the encode
method.

You can specify other encodings
too.

We can decode a bytes literal too.

92 J. ROGEL-SALAZAR

Please remember that you will need to provide the correct
encoding (UTF-8, UTF-16, etc.) to the decoding method;
otherwise, you will get a Unicode error at best or a miss-

encoding at worst!

Since we are dealing with characters, and all text in Python
3 is Unicode, it makes sense that the regular expression
patterns that we discussed in Section 2.2 also hold for non-

Latin characters:

> thirtyseven="3 A L w772’

> re.sub(’/2’", '7%’", thirtyseven)

AL DI

It is also possible to use the \uFFFF Unicode notation,
enabling us to use character ranges and all the fun that

comes with regular expressions:

> re.sub(’\u3060’', ’\u306a’, thirtyseven)

EAL BRG]

You can check the Unicode code points in sites such as
www.utf8-chartable.de or www.key-shortcut.com for

example.

In Section 2.1.1 we read an HTML page and we encountered
some interesting non-breakable spaces shown as \xa0. It
turns out that these are non-breakable spaces encoded in

Latinl or ISO—8859 — 1. We dealt with this issue with a

Providing the correct encoding is

important.

The use of regular expressions
patterns can be applied to Unicode

too.

This is a hexadecimal
representation for the Unicode
character.

Check Unicode tables in sites
such as www.utf8-chartable.de or

www.key-shortcut.com.

http://www.key-shortcut.com
http://www.utf8-chartable.de
http://www.key-shortcut.com
http://www.utf8-chartable.de

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 03

replacement in Pandas. An alternative may be to use a
regular expression to remove all non-US-ASCII characters,

i.e., characters outside the \u6000-\u0O7F.

> test_text="abc\xa0\u3060\u306a\u3060\xalde!’

_ Here we are removing characters
> print(test_text) outside the range of US-ASCII

characters.

abc 727472 de!

> only_ascii = re.compile(r’["\u0000-\uGO7f]")

> only_ascii.sub(’’, test_text)

"abcde!’

Notice that when printing the string there are some blank

spaces between the Latin and Japanese characters. In this
Remember that [“abc] means not

case, we are using an exclusion in a character set to remove a, b nor c.

all non-US-ASCII characters. It is a drastic measure, but I

am sure you get the point.

As you can imagine, it is not unusual to to come across

encoding problems when opening files in Python 3, and

there are some modules that may help with these issues.

Say you are interested in opening a CSV file to be loaded Python 3 uses UTF-8 as default.

into a Pandas dataframe. If the stars align and the creator You may need to specify the file

encoding to ensure appropriate
of your CSV is magnanimous, they may have saved the file handling for other encodings.
using UTF-8. If so you may get away with reading the file as

follows:

94 J. ROGEL-SALAZAR

import pandas as pd

df = pd.read_csv('myfile.csv’)

As we mentioned before, it is not easy to tell what encoding
was used to create a file and in principle you should pass

a parameter to Pandas telling it what encoding the file has
been saved with, so a more complete version of the snippet

above would be:

import pandas as pd

df = pd.read_csv('myfile.csv’, encoding="utf-8")

What happens when you do not know what encoding

was used to save the file? Well, you can ask, but it is very
unlikely that the file creator would know or tell you... In
those cases, modules such as chardet™ can help you detect
the character encoding in your file. The detect function

in the module returns a dictionary containing the auto-

detected character encoding and a confidence level from 0 to
1.

> import chardet

> chardet.detect(b’I.\xa0setosa’)

{'encoding’: 'IS0-8859-1’, ’'confidence’: 0.73'}

The example above tells us that the likely encoding for the
string passed to the detect function is ISO—-8859 — 1 (with
a confidence level of 0.73). Let us take a look at an example

implementation for a file:

In Pandas you can provide an

encoding parameter.

" Chardet.
https://chardet.readthedocs.io

In this case, the string is detected
to be encoded in ISO—8859 — 1.

https://chardet.readthedocs.io

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 05

import chardet

import pandas as pd

def find_encoding(fname):

r_file

open(fname, 'rb’).read()
result = chardet.detect(r_file) Use this snippet to detect file
charenc = result[’encoding’] encodings with chardet.

return charenc

my_encoding = find_encoding('myfile.csv’)

df=pd.read_csv(’'myfile.csv’, encoding=my_encoding)

Finally, what about writing a file with the correct encoding?
Well, if you are using Pandas, it is quite straightforward as
you simply pass a parameter with the desired encoding as Or nothing, as the default is

follows: UTE-8.

> df.to_csv(’'newfile.csv’, encoding="utf-8")

Otherwise, you need to ensure the encoding of the strings as

you write them down:

sekai = "ZAICHIIMHFE "

Do not forget to encode your

with open(’sekai.txt’, 'wb’) as f: strings when writing to a file, and

. . tell your users!
f.write(sekai.encode())

96 J. ROGEL-SALAZAR

2.4 Tokenising Text

WE HAVE BEEN DEALING WITH text in full, and most of
our discussion has been about obtaining and pre-processing
it. We started this chapter talking about the importance

of natural language and how to make sense of it with the
aid of computers. One of the first tasks that will enable us
to do this is to split up our text into meaningful units, or
tokens. This is called tokenisation and it is a typical first step

in natural language processing.

In languages like English or Spanish, simple tokenisation
can be used by separating the tokens by whitespaces.
Unfortunately, for languages such as Chinese or Japanese,
where whitespaces are not used between words, the
tokenisation tasks becomes more involved. The tokenisation
process may also require to discard some tokens such as
punctuation, numbers, or some common words. We will

cover more of this later on in this section.

We can readily split a string of text as follows:

> sentences = "I know, I know! Nobody expects the
Spanish Inquisition. In fact, those who do
expect -"

> sentences.split()

['T", 'know,', 'I'", ’'know!’, 'Nobody’, 'expects’,
"the’, ’Spanish’, ’'Inquisition.’, 'In’, 'fact,’,
"those’, 'who’, ’'do’, ’'expect’, '-’]

In this context, a token is a

meaningful unit of text.

A common tokenisation technique
involves separating tokens by
whitespaces.

We can separate tokens with the

split method for strings.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 97

We could in principle also define a string of characters on
which to split the sentence. For example, if we wanted to

split on the comma, we can do the following:

> sentences.split(’,’)

['T know',
" I know! Nobody expects the Spanish Inquisition.
In fact’,

' those who do expect -']

You may notice that in the first example, the punctuation
marks are joined to the words, and in the second one there
are some whitespaces at the beginning of the second and
third elements in the list. We can use regular expressions
to split on the desired marks, in this case for instance on

comma, exclamation mark, dot, hyphen and whitespaces:

> import re

> re.split(’'[,!'\.\-\s]+’,sentences)

['TI", '"know', 'I', 'know’, 'Nobody’, ’'expects’,
"the’, ’'Spanish’, 'Inquisition’, ’'In’, 'fact’,

"those’, 'who’, ’'do’, ’'expect’, '’]

There are other ways to start our processing of natural
language and a package that comes to mind in this context
is the Natural Language Toolkit, or NLTK for short. Word

tokenisation can be done with the word_tokenize function:

We can also specify other

separators for splitting.

We can even use a regular
expression to specify the

separator!

Do check out what NLTK has to

offer!

98 J. ROGEL-SALAZAR

> import nltk

> nltk.word_tokenize(sentences)

['T", 'know', ',', 'I", 'know', '!’, ’Nobody’,
"expects’, 'the’, ’'Spanish’, 'Inquisition’, '.’,
"In’, 'fact’, ',’, "those’, 'who’', 'do’, 'expect’,

]

Furthermore, we can use NLTK to tokenise at a sentence

level:

> nltk.sent_tokenize(sentences)

["T know, I know!’,
"Nobody expects the Spanish Inquisition.’,

"In fact, those who do expect -']

As we can see, in this case we end up with a list with three

sentences. Not bad!

We can now start to normalise the text so that we can match

tokens despite some differences such as the use of capital
letters (cat, Cat and CAT can be assumed to refer to the
same friendly Uber-being.) or inflections (cat, cat’s, cats
and cats’ all come from the same common base cat). It is
possible to use the lower method to deal with the use of

capital letters:

> words = nltk.word_tokenize(sentences.lower())

We can take a look at the result of the tokenisation:

Word tokenisation can be easily
done with NLTK'’s word_tokenize.

Whereas sentence tokenisation is

handled with sent_tokenize.

We can normalise the text so that
we can match tokens that may
be different in form but not in

meaning

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON Q9

> print(words)

["i", 'know', ',", ’'i', 'know’, ’!’, ’'nobody’,
"expects’, 'the’, ’'spanish’, ’'inquisition’, '.’,
"in’, ’'fact’, ',’, 'those’, 'who’', 'do’, 'expect’,

l_r]

To deal with inflections, we can use stemming or
lemmatisation. The former refers to the process of severing
word endings, whereas the latter relies on a more systematic
analysis to obtain the so-called lemma, or dictionary form, of
a word. NLTK comes with a couple of stemmers, such as

the Porter stemmer:

> porter = nltk.PorterStemmer()

> [porter.stem(word) for word in words]

[*i’, 'know’, ',', 'i’, 'know', '!’, 'nobodi’,
"expect’, 'the’, ’'spanish’, 'inquisit’,’.’, 'in’,
'fact’, ',’', 'those’, ’'who’, ’'do’, ’'expect’, '-']

Lemmatisation can be done with WordNetLemmatizer:

> lemmatiser = nltk.WordNetLemmatizer()

> [lemmatiser.lemmatize(word) for word in words]

’

["i’", 'know', ',", 'i', 'know’, '!’, ’'nobody’,
"expects’, 'the’, ’'spanish’, ’'inquisition’, '.’,

’ ’ ror

in’, 'fact’, ’,’, 'those’, ’'who’, 'do’, ’expect’,

l_r]

In this case, we have changed all

the text into lowercase.

Lemmatisation and stemming can

help us normalise the text too.

An example of stemming text with

PorterStemmer.

Lemmatising can be done with

WordNetLemmatizer.

100 J. ROGEL-SALAZAR

Another useful thing that comes with NLTK is the
regexp_tokenize function with similar functionality to
re.findall, but efficient for the tokenisation task. It
becomes particularly useful in the tokenisation of utterances
in social media such as tweets. For example, lets take the
following made-up tweet:

@norwegian_blue This parrot is no more!!! :(#sad

https:/ /jrogel.com
If we use the tokeniser straight out of the box, we end up
with some tokenisations that are no longer meaningful in

the context of a tweet:

> tweet='@norwegian_blue This parrot is no more!!!
:(#sad... https://jrogel.com’

> nltk.word_tokenize(tweet)

['@', 'norwegian_blue’, ’'This’, ’parrot’, ’'is’,
Inol’ Imorel’ I!I' I!I' I!I’ I:I’ I(I’ I#I' ’Sad”
"...", '"https’, ':', "//jrogel.com’]

It may be preferable to parse the text so as to render a
meaningful tokenisation. We can use regular expressions to
do this, and in particular, we can use the regexp_tokenize
function that comes with NLTK offering consistency with
other NLTK functions. Also it may provide some efficiencies
when parsing for the desired pattern. It is important to note
that the order of the arguments in the regexp_tokenize
function is as follows: First the string to be parsed and then
the regular expression. We shall put together a sequence

of regular expressions that break our strings in the chosen

manner.

Tokenisation can also be
done with the help of regular

expression.

Using the tokeniser straight
out of the box results in a bad

tokenisation.

re functions take their arguments

in the reverse order.

https://jrogel.com%E2%80%99
https://jrogel.com

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 101

Let us then define a regular expression pattern that enables
a more meaningful tokenisation for our example tweet

above:

pattern = r’’’(?x) # A verbose regex
I\NSEIPAGHIN. 2B P\ dx? unravel the regexp line-by-line
[(7:[A-ZIN.)+ below.
[(?:https?://7)2(2:\w+\.) (2:\w{2, })+(?: [\w/]+)?
[[@\F#I2\W+(7:[- " [\w+)x*
AVATAY
[[!'?]+

[: 101"

Looks complex, but we shall

The first line in our regular expression starts with (?x)

which lets the parser know that we are defining a verbose

regular expression. This lets us create a more readable

pattern and even include comments with #. The next line, A lot of useful information here.

[\N$£17\d+[\. :%]?\d*%? captures decimal numbers, Make sure you check out the

regular expression patterns in
percentages and currency figures (in this case dollars $, or Table 2.2.
pounds £). We then use (?: [A-Z]\.)+ to obtain
abbreviations where characters are separated by dots. The
fourth line captures URLs and the next one deals with @
mentions and hashtags (#). We capture ellipses with \.\.\.
and multiple exclamation and question marks with [!?]+.

Finally, we capture a couple of ASCII emoticons such as :)

and : (with : [()].

We can now try our new shiny pattern on the example tweet

we have used before:

102 J. ROGEL-SALAZAR

> nltk.regexp_tokenize(tweet, pattern)

['@norwegian_blue’, 'This’, ’'parrot’, ’is’, 'no’,
"more’, "!!’', '":(', "#sad’', '...',

"https://jrogel.com’]

This has broken down the tweet in a more meaningful way,
where we can distinguish hashtags (#sad) , user mentions
(@norwegian_blue), and even emoticons. This sort of task

is so common that NLTK has a tweet tokeniser that can be

used out of the box:

> from nltk.tokenize.casual import TweetTokenizer

> TweetTokenizer().tokenize(tweet)

['@norwegian_blue’, 'This’, ’'parrot’, ’is’, 'no’,
"more’, V', v, (", '#sad', ...’

’

"https://jrogel.com’]

You can see some differences in the results compared to
those from our own pattern. The flexibility offered by using

either pattern depends on our particular use case.

2.5 Word Tagging

Now THAT WE ARE ABLE to tokenize a corpus and break it
down into its (meaningful) components, we can turn our
attention to the categorisation of those units. For instance,

we can try to distinguish between verbs, adjectives and

This is a much better tokenisation

of the sample Tweet!!

Check out the TweetTokenizer
that comes with NLTK.

https://jrogel.com%E2%80%99
https://jrogel.com%E2%80%99

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 103

nouns and start making sense of the utterances in the

corpus.

Categorising the words into the parts they play in the
speech is imaginatively called Part-Of-Speech tagging, or POS Part-Of-Speech tagging

categorised the words into the

tagging. NLTK lets us carry out POS tagging with the
parts they play in a sentence.

post_tag function. Lets take a look using the corpus

sentences we defined in Page 96. For the purposes of this

example, we will concentrate on the second sentence, i.e.,

“Nobody expects the Spanish Inquisition”:

s = nltk.sent_tokenize(sentences)
sl = nltk.word_tokenize(s[1])

> nitk.pos-tag(sl) A POS tagged sentence with

NLTK.
[('Nobody’, 'NN'),
('expects’, 'VBZ'),
("the’, 'DT'),
('Spanish’, '33"),
('Inquisition’, 'NNP’),
(R

We can see that “Nobody” is a noun (NN), “expects” is a You can look at the

verb in the present tense (VBZ), “the” is a determiner (DT), definitions of the tags using

nltk.help.upenn_tagset() and

“Spanish” is an adjective (3J) and “Inquisition” is a proper pass the tag as an argument.

noun (NNP).

We can put all this together and analyse a larger corpus
than the ones we have been dealing with so far. Let us take
a look at one of the first speeches made by Barack Obama

back in 2009. We will carry out the following steps:

104 J. ROGEL-SALAZAR

1. Visit The American Presidency Project website

2. Scrape the speech from the “Address Before a Joint

Session of the Congress” from February 24th, 2009™>
3. Save the speech to a local plain text file
4. Parse the sentences of the speech

5. Run some POS and determine the top named entities in

the speech

It sounds like something we can definitely do. So let us
get started by reading the speech page and loading it into
Beautiful Soup:

wp="https://www.presidency.ucsb.edu/node/286218’
pageSource = urlopen(wp).read()

pa2009 = BeautifulSoup(pageSource, ’'lxml’)

We can now find the place where the actual speech is
located. In this case, it is in a div with class
field-docs-content inside another div with class
main-container container, yes... two containers... We are
interested in all the paragraphs and therefore we use the

find_all method to obtain them:

maincontainer = pa2009.find(’'div’,
class_='main-container container’)

content = maincontainer.find(’'div’,
class_='field-docs-content’)

content_p = content.find_all(’'p’)

https:/ /www.presidency.ucsb.edu

2 Address Before a Joint

Session of the Congress. Barack
Obama. 44th President of

the United States: 2009-2017.
https:/ /www.presidency.ucsb.edu/
node/286218

Yes, we can!

Remember that if the page source
changes, this code will need to be
adapted accordingly.

Refer to Section 2.1 for the use of

Beautiful Soup.

https://www.presidency.ucsb.edu
https://www.presidency.ucsb.edu
https://www.presidency.ucsb.edu
https://www.presidency.ucsb.edu

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 105

Now that we have the paragraphs, we can get the text and
start cleaning it. For example, we need to get rid of heading
and trailing spaces, as well as joining the paragraphs in a

single string:

paragraphs = [p.get_text().strip() for p in
content_p]

speech = ' \n’.join(paragraphs)

We can now use this string to write the text to a file:

with open(’obama2009.txt’, 'wb’) as f:

f.write(speech.encode())

It is possible now to separate each of the sentences in the

speech:

sentences = nltk.sent_tokenize(speech)

and obtain the word tokens that can be POS tagged:

tokenized_sentences = [nltk.word_tokenize(sentence)
for sentence in sentences]

tagged_sentences = [nltk.pos_tag(sentence) for

sentence in tokenized_sentences]

So far so good! We now have tagged sentences and we
could take a look at those to obtain the nouns mentioned in
the speech. However, we are interested in more than simply
getting all the nouns. We would like to get those named
entities that are the subject of the sentences, in other words

the protagonists of the speech. To that end, we will use

We are concatenating all the
paragraphs, leaving a new line in

between them.

We use sentence tokenisation to
separate each of the sentences in

the speech.

Finally we tokenise each of the
sentences and POS tag the tokens

we have obtained.

106 J. ROGEL-SALAZAR

a technique called chunking, which is a process to extract Chunking lets us extract phrases

phrases from unstructured text. In this way, a phrase such from unstructured text, and in this

case obtain named entities.
as “United States” becomes a single entity instead of ending

up with two separate words “United” and “States”.

As it is the case with POS tagging, there are standard chunk
tags that can be obtained, such as Noun Phrases (NP),

Verb Phrases (VP) and Named Entities (NE) for example.
In NLTK we can use the ne_chunk_sents which uses a

maximum entropy (MaxEnt) classifier using data from the

ACE (Automatic Content Extraction)’3 corpus. The ACE 3 ACE 2004 Multilingual
. Training Corpus.
corpus has been manually annotated for named entities. https://catalog.ldc.upenn.edu/
LDC2005Tog

The named entity chunker uses the following features to

predict NEs, among others:
¢ Capital letters, no numbers in the word

¢ Word length

e First and last three letters of the word These are some of the features
that determine a named entity in
e POS tag NLTK.

* Dictionary words

e POS tags of the preceding and following words

Let us determine the named entities in the tagged sentences

from Obama’s speech:

chunked_sentences = nltk.ne_chunk_sents(We are using NLTK’s

tagged_sentences, binary=True) ne_chunk_sents to chunk the

sentences.

In this case, binary=True lets NLTK know that we want

to use the binary named entity chunker. The result is a

https://catalog.ldc.upenn.edu
https://catalog.ldc.upenn.edu

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 107

generator with Tree objects. In this context, a tree is a
hierarchical grouping of syntactical elements that make up a

natural language utterance.

A Tree consists of a node value which is typically a string
label and a Python iterable object comprising the node’s
children which in turn can also be Tree objects themselves.

Let us look at an example with the sentence shown in

Figure 2.4.
~ . — G e e g
| = == the e : . . s :
| Nobody | expects & e : Spanish © Inquisition :
| \) Article (OT) | & | 1 | :
% » . Adjective (JJ) Noun (NNP) .
Verb (VBZ) - -
Named Entity (NE) | L1 e a s e R R ISR ARA RN RN EREE RN RN .
N
L i
Figure 2.4: A chunked sentence
The sentence has two named entities, i.e., “Nobody” and with two named entities.

“Spanish Inquisition”, one verb in the present tense
(“expects”) and a definite article (“the”). We can recreate

that Tree in NLTK as follows:

from nltk.tree import Tree

nel = Tree('NE’, [(’'Nobody’, 'NN")1)

5 The Tree structure of the chunked
ne

Tree('NE’, [('Spanish’, '3J]"), N

sentence shown in Figure 2.4.
("Inquisition’, 'NNP’)1])

s = Tree('S’', [nel, ('expects’, 'VBZ'),

("the’, 'DT’), ne2])

In this case, we can see that the first named entity is a tree

labelled NE and the token is appropriately tagged as a noun

108 J. ROGEL-SALAZAR

(NN). With this knowledge, let us write a function that parses

the Tree recurrently and gets the entity names in a chunked

sentence:

def get_entity names(tree):
entity_names = []
if hasattr(tree, ’'label’) and tree.label:
if tree.label() == 'NE’:
entity_names.append(’ '.join([child[0]
for child in tree]))
else:
for child in tree:
entity_names.extend(

get_entity_names(child))

return entity_names

We can finally apply our function to the speech we are

analysing:

entity_names = []
for tree in chunked_sentences:

entity_names.extend(get_entity_names(tree))

> entity_names[-5:]

["South Carolina’, 'American’, 'God’,

"United States’, ’'America’]

Let us finish this section by creating a dataframe with the
data obtained and determine the top 10 named entities by
frequency of mentions in the speech made by Obama in

2009 before a Joint Session of the Congress:

A function to extract named

entities from a given Tree.

We extract the named entities
from the speech using the function

above.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 109

from collections import Counter

import pandas as pd

data_names = Counter(entity_names)
df = pd.DataFrame(list(data_names.items()),
columns=['Entity Name’, 'Freq’l)

df.set_index(’'Entity Name’, inplace=True)

We can see the top 10 named entities in the speech in Figure

2.5.

The named entities can be loaded
into a Pandas dataframe and be

analysed.

American

America

Congress

United States

Iraq

Democrats

Frequency

Afghanistan

Social Security

Medicare

Applause

a0 5 10 15
Named Entities

2.6 What Are You Talking About?: Topic Modelling

UNDERSTANDING THE DIFFERENT THEMES OR topics that

a piece of text is about constitutes another important and

20

Figure 2.5: Top 10 named entities
in the 2009 speech made by Barack
Obama before a Joint Session of
the Congress.

110 J. ROGEL-SALAZAR

useful application of natural language processing. The
identification of topics from the word patterns present in a
corpus is known as topic modelling and is an unsupervised
task. In contrast to topic modelling, we have rule-based text

mining approaches based on the use of keyword searching.

But, what is a topic? In this context, we are interested in
looking for repeating patterns of terms that co-occur in a
given corpus. This means that the end result of topic
modelling is a set of words that can be used to describe the
theme or themes in the corpus. Please note that the
algorithm does not provide a closed, definitive topic.
Instead, we require a human to provide the label. Also,
since topic modelling is an unsupervised task, the other
important task in the process requires the identification of

the likely number of topics in the corpus.

2.6.1 Latent Dirichlet Allocation

ONE OF THE MOST POPULAR algorithms employed in
topic modelling is the Latent Dirichlet Allocation algorithm
(LDA). It enables us to explain existing observations based
on latent, or unobserved, groups of variables that account

for similarities in the original data.

One of the first descriptions and uses of LDA was in the
area of population genetics by Pritchard, Stephens and
Donnelly™4. In their paper, the authors address the problem
of assigning individuals to K populations (with K
potentially being unknown). In this case, instead of different

pieces of text, we have individual genotypes, and instead of

The identification of topics from
word patterns is the main task in

topic modelling.

Since topic modelling is an
unsupervised task, no labels are

provided. Our task is to find them!

LDA stands for Latent Dirichlet

Allocation.

' Pritchard, J. K., Stephens,

M., and Donnelly, P. (2000).
Inference of population structure
using multilocus genotype data.

Genetics 155(2), 945-956

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON

looking at the frequency of words in each text, we are
interested in the allele frequencies in the populations. The
distribution on these frequencies is assumed to have a
Dirichlet distribution which has the property that the

frequencies add up to 1.

In short, the Latent Dirichlet Allocation algorithm takes
information from latent variables taking samples over a
probability simplex representing probabilities over K
distinct categories, and the aim is to allocate each

observation to one of the categories.

A more formal description of the LDA algorithm was done
by Blei, Ng and Jordan'> in 2003. In that paper, LDA is
presented in the context of topic modelling where each
piece of text is seen as a mixture over an underlying set of
topics. Here, we will provide an intuitive explanation of the

main concepts behind the algorithm.

Let us start by considering a collection of documents we
are interested in analysing. Each individual document talks
about particular subjects and we can safely assume that
each document contains a mixture of different topics. One

77

topic may contain the words “quantum”,

i

atom”, “energy”

and “tunnelling”, whereas another may have words such as

VZ7i

“data”, “statistics”, “python” and “analytics”.

Topics are therefore abstract entities that we cannot directly
see. Nonetheless, the appearance of the words mentioned

in our example lets us infer that documents that contain the
first set of words are about “quantum physics”, whereas those

containing the second are about “data science”, for example.

Think of a simplex as a set of

numbers that add up to 1.

> Blei, D. M., Ng, A. Y., and
Jordan, M. L. (2003). Latent
Dirichlet Allocation. Journal
of Machine Learning Research 3,
993-1022

111

Any given document is thought of

containing a mixture of different

topics.

Nonetheless, we can try to
identify a dominant topic in

each document.

112 J. ROGEL-SALAZAR

This all sounds very encouraging; however, it is not possible
to infer the topics exactly. There may be some documents
about doing research in quantum physics using Python

to analyse data! In any event, we may be able to work
backwards and still be able to say something about the

latent topics in our corpora.

We can, for instance, assume that we know which topic
created each and every word in the collection, and then

we see a word w;, in document w whose topic of origin is
unknown to us. Furthermore, we have a corpus made out of
M documents denoted D = {wy,wy,...,wy}. Our task is

to decide if word w;,, comes from topic z;.

Some avenues we may be able to pursue to answer the
question include the frequency with which word w,, appears
in documents about topic z,. Also, we may want to consider
if topic z, is prevalent in the rest of document w. At this
point, it may be convenient to remind ourselves of the
powerful Bayes” theorem:

P(A)P(B|A)

P(A[B) = P(B) , (2.1)

where P(A|B) is the conditional probability of event A
taking place given B. We provided a derivation of this
expression in Chapter 6 of Data Science and Analytics with
Python™®.

In this case, we know the frequency of the word w;, in topic
z, as well as the total number of words in that topic. Also
we have a prior of the number of words in document w

that come from topic z,,. We can use Bayes’ theorem to

A document here is a sequence
of N words denoted by w =

(wy,wy, ..., wN).

The powerful Bayes’ theorem

strikes again!

¢ Rogel-Salazar, J. (2017). Data
Science and Analytics with Python.
Chapman & Hall/CRC Data
Mining and Knowledge Discovery
Series. CRC Press

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 113

determine the probability of having topic z, given the word

w;, in document w.

In LDA for each document w in corpus D we require the

following constructs:

* The sequence of N that makes up a document follows a

Poisson distribution, and
e 0 follows a Dirichlet distribution denoted Dir(«)

For each of the N words we choose a topic z, that follows
a multinomial distribution with parameter 6, and then
we choose a word w;, from the multinomial probability

conditions on the topic zy, i.e., p(wWn|zx, B).

What does this all mean? Well, remember that we started
up assuming that the words in a document come from a
specific topic, and vice versa. Let us then get all the words
and allocate them to random topics to test if our initial
assumption holds. Effectively we use the words in the
documents to assess the words in the topics, and then

we use the words in the topics to assess the words in the
documents. If the words fit in the topic distribution, then we
can go home. However, if they do not, then we change the
topic the word is in. This is done iteratively until not many

words need to be changed.

In the expressions above, you may have noticed two
hyperparameters in our model, namely « and p. The first
one is related to the document-topic density, in other words
the number of topics per document; whereas the second one

tells us something about the topic-word density. That is the

This requirement on N can be

relaxed.

« will become one of our

parameters.

Another parameter in our model is

B.

This is in effect the iterative work
we require in the algorithm to
determine the topic distribution in

our corpus.

The higher the value of «, the
higher the number of topics in a
document. The higher the value of
B, the higher the number of words
per topic.

114 J. ROGEL-SALAZAR

number of words per topic. The other parameter that needs

to be given as an input is the number of topics!

As stated by Blei et al'’, the inferential problem in LDA is
computing the posterior distribution of the latent variables

given a document:

p(6, 2w, B) = ’W (2.2)

It is possible to represent the LDA model as a probabilistic
graphical model as shown in Figure 2.6. The parameters «
and j are sampled once and are defined at a corpus level.
The variables 0 are sampled once per document, whereas w

and z are sampled once for each word in each document.

From the discussion above, it is clear that we need to break
down our documents into the constituent words and the
information presented earlier on in this chapter is therefore
quite useful. In particular, we will need to create a
vocabulary of all the known words and measure their
presence in our corpus. This is usually referred to as a bag of
words, where information about the word order or even the
sentence structure is disregarded, and we are only
concerned with whether individual words are present or not
in a document. If we look at individual words, we have a
unigram analysis; in case we are interested in pairs of words
appearing together we are analysing bigrams and as you can

imagine this can be extended to n-grams.

For probabilistic models, it is common to use the

log-likelihood of a held-out test for evaluation. We should

7 Blei, D. M., Ng, A. Y., and
Jordan, M. L. (2003). Latent
Dirichlet Allocation. Journal
of Machine Learning Research 3,

993-1022

Figure 2.6: Graphical model
representation of LDA.

We need to determine the
vocabulary in our corpus and
we do this with a bag of words

approach.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 115

be familiar with the idea of partitioning our dataset into
training and testing sets, and in this case we would have w
unseen documents and for our purposes of evaluation we
can ignore the topic-distributions as they correspond to the
training set. The perplexity measure is defined in terms of

the log-likelihood as:

_ZdIOgP(wdlz,a)> '

count of tokens (2:3)

Perplexity(w,) = exp (

The perplexity is a decreasing function of the log-likelihood
of the unseen documents, and the lower the perplexity, the

better the model.

2.6.2 LDA in Action

IT 1s Now TIME TO take a look at LDA in action. There are
several options we have with Python including the excellent
gensim'® package, or spaCy™9. In this case we are going to

concentrate on our good old friend Scikit-learn.

In Chapter 6 of Data Science and Analytics with Python>°, we
encountered a dataset containing a number of tweets used
in the context of explaining the naive Bayes classifier
algorithm. We will be using the same corpus here. The data
contains two sets: A training dataset with labelled tweets,
and a testing dataset without labels. For the purposes of the
discussions in this chapter, we will not be using the given
labels in the training dataset. Remember that topic

modelling is an unsupervised task! The data can be

The perplexity measure can help
us determine the performance of

our model.

8 Rehtifek, R. and P. Sojka (2010,
May). Software Framework

for Topic Modelling with Large
Corpora. In Proceedings of the
LREC 2010 Workshop on New
Challenges for NLP Frameworks,
Valletta, Malta, pp. 45-50. ELRA.
http://is.muni.cz/publication/
884893/en

9 spaCy. https://spacy.io

* Rogel-Salazar, J. (2017). Data
Science and Analytics with Python.
Chapman & Hall/CRC Data
Mining and Knowledge Discovery
Series. CRC Press

http://is.muni.cz
https://spacy.io
http://is.muni.cz

116 J. ROGEL-SALAZAR

obtained at https://doi.org/10.6084/
m9.figshare.2062551.v12!,

Let us first read the data into Python:

import pandas as pd

tweets = 'Train_QuantumTunnel_Tweets.csv’

tweets = pd.read_csv(tweets, encoding="utf-8")

As we are interested in the words that appear in our tweets,
we are bound to lose some information such as URLs and
even @-mentions and hashtags. We will process our data to

capture this information with the following function:

def mentions_hashtags_urls(tw):
mnt = re.compile(‘‘@\w+(?:[-"1\w+)*|"")
hash = re.compile(’ ‘#\w+(?:[-]\w+)*x"")

urls = re.compile(‘‘http\S+'")

mention = ‘‘ '’.join(mnt.findall(tw))
hashtag = ‘* '’.join(hash.findall(tw))
link = “* "’.join(urls.findall(tw))

return mention, hashtag, link

This compiles a regular expression to capture @-mentions,
hashtags and URLs. and returns a concatenated version of
each of these items. We can now map this function from
the “Tweets” column in our dataset to three new columns as

follows:

** Rogel-Salazar, J. (2016,
Jan). Data Science Tweets.
https:/ /doi.org/10.6084/
mg.figshare.2062551.v1

The location of your file may be

different!

This function lets us capture
@-mentions, hashtags and URLs.

Remember that findall returns a
list.

https://doi.org/10.6084/m9.figshare.2062551.v1
https://doi.org/10.6084/m9.figshare.2062551.v1
https://doi.org/10.6084/m9.figshare.2062551.v1
https://doi.org/10.6084/m9.figshare.2062551.v1

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 117

tweets['Mentions’], tweets[’Hashtags’],\
tweets['URLs’'] = zip(xtweets[’'Tweet’'].\

map (mentions_hashtags_urls))

We are not going to do much else here with this
information, but you can take a look at the results and
perhaps use them to improve the vocabulary in our bag of

words. Here is some of that information though:

tweets[['Mentions’, 'URLs’, ’Hashtags’]l].tail(3)

Mentions URLs Hashtags
@R_Trotta
https://t.co/no4Usx6djV #maths
http://t.co/fW7pSgTWG]

We are ready to start the tokenisation of our corpus and

for that we need to bring up some useful packages and
functions. First we will be using the TweetTokenizer we
encountered in Section 2.4. We can also decide to use a
lemmatiser or a stemmer for the pre-processing part. In this
case, we will use a stemmer which we hope will help with
some differences in spelling for example between American

and British English:

import nltk

from nltk.tokenize.casual import TweetTokenizer

porter = nltk.PorterStemmer()

Here we use the power of zip to
populate three columns in our

dataframe! Cool, right?

These three columns can help
inform our topics. We will not use
them in the rest of our analysis
though.

You write tokenize, I write tokenise.
Let’s call the whole thing off.

http://t.co/fW7pSgTWGj
https://t.co/no4Usx6djV

118 J. ROGEL-SALAZAR

We may also want to get rid of the most common words in
our bag, either in the language of the corpus such as “a”,
“the” “this”, “that”, ..., or words that we specifically would

like to remove. For that we will use stopwords from NLTK:

from nltk.corpus import stopwords

import string

stop_words = stopwords.words(’english’)

stop_words.extend([‘‘i’'ve’"])

Notice that we can even extend the list of words adding
those which are of no interest to us. NLTK supports other
languages including Spanish, German, Italian, etc. Another
thing we will need to take care of is punctuation. For that
matter we will use the punctuation method of string when

processing our documents.

In a bag of words analysis we need to consider that for a
computer, capital and lowercase letters are not the same. So
“President” and “president” would count as two different
words in their eyes. We can deal with this issue by
transforming all capital letters into lowercase as part of the

pre-processing we need to carry out.

Here are the steps we will be taking;:
¢ Transform the text into lowercase characters
e Remove @-mentions

* Remove character sequences that contain numbers

In this case, the language is
English.

Stop words for other languages
are available. We will also
eliminate punctuation in our

documents.

I know... anthropomorphising
computers is not very useful but

then again...

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 119

¢ Remove URLs

e Tokenise each document with TweetTokenizer

* Remove stop words (English)
e Stem the tokens

¢ Remove punctuation

Let us take a look:

Finally we join back the tokens in a processed string

def tw_preprocess(tw):

tw = tw.lower()

return tokens

tw = re.sub(‘‘@\w+(?:[-"1\w+)x"", ‘"7, tw)

tw = re.sub(r‘\S+\d\S+'’, “‘'", tw)

tw = re.sub(‘‘http\S+'", “‘'’, tw)

tw = re.sub(‘“[#]|']"", ‘77, tw)

tokens = TweetTokenizer().tokenize(tw)

tokens = [t for t in tokens if t not in
stop_words]

tokens = [porter.stem(t) for t in tokens]

tokens = [t for t in tokens if t not in
string.punctuation]

tokens = ' '.join(tokens)

OK, it is now time to process our corpus:

apply(tw_preprocess)

tweets[‘ ‘Processed_Tweet’'] = tweets[’‘Tweet’’].\

Let us preview the result:

We will use this function to
process our corpus. It will later be

employed on unseen tweets too.

120 J. ROGEL-SALAZAR

> tweets["Processed_Tweet"].tail()

perhap peopl level
yay connect automat eduroam univers michigan great
true mean would cinema arriv late also paid ent...

report card famou mathematician math

princeton guid linear model logist regress r

We are in a position to vectorise our documents; in other
words, we would like to create a (sparse) matrix containing
the words that make up each of the documents in our
corpus. We can do this in Scikit-learn with the help of

CountVectorizer:

from sklearn.feature_extraction.text import \

CountVectorizer

no_features = 1000
vectoriser = CountVectorizer(
min_df=2,

max_features=no_features)

We are defining a matrix of token counts where we require
at least 2 occurrences of the token (mid_df=2) and consider
a vocabulary of 1000 features ordered by term frequency
across the corpus (max_features). We can define other
parameters such as the use of stop_words to remove stop
words, or define regular expressions to extract tokens with

token_pattern.

Remember that we have stemmed

our words.

CountVectorizer creates a matrix
of token counts from the words

contained in our corpus.

We have already taken care of stop
words above.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 121

Now that we have instantiated our vectoriser, let us learn
the vocabulary and return the term-document matrix for

our corpus:

tw_vectorised = vectoriser.\

fit_transform(tweets[’Processed_Tweet’]) We use get_feature_names to

. . obtain a human readable version
tw_vectorised_names = vectoriser.\ .
of the tokens used in our model.

get_feature_names()

We can get the actual tokens that have been used in the
construction of the matrix with the help of the
get_feature_names method. Let us look at the first few

entries:

> print(tw_vectorised_names[:5])

See the result of

. . . get_feature_names here.
["actual’, 'ai’, 'algorithm’, ’'alien’, ’'amaz']

The term-document matrix we have now obtained can be
used to feed to the Latent Dirichlet Allocation algorithm.

Scikit-learn has an implementation of the LDA algorithm in Scikit-learn provides
sklearn.decomposition. We will now instantiate an object LatenbirichletAtlocation to
implement LDA.

to be used in our modelling:

from sklearn.decomposition import\

LatenDirichletAllocation

Remember that the number of topics is an input parameter.
However, we do not know a priori how many topics there

are. So, we are going to carry out a grid search on the

122 J. ROGEL-SALAZAR

number of topics. The implementation offers two learning
methods: A batch variational Bayes method, and an online
one. The latter uses a mini-batch of training data to update
the topics incrementally. The learning rate for the online
method is controlled by the learning decay and learning

offset parameters.

Our grid search will be done over both the number of topics
and the learning decay. We will look at having between 3
and 7 topics in the corpus and learning decay equal to 0.6,
0.8 and 1.0.

n_components = range(3, 8)
search_params = {‘‘n_components’’: n_components,

‘‘learning_decay’'’': [0.6, 0.8, 1.01}

Let us instantiate our LDA model:

lda = LatentDirichletAllocation(
max_iter=10,
learning_method=‘‘online’’,
random_state=0,
evaluate_every=-1,

learning_offset=50.0)

We have a model with 10 as the maximum number of
iterations, using the online Bayesian method with a random
number generator seeded with 0. We can evaluate the
perplexity at a number of iterations. If the evaluate_every

parameter is 0 or negative, we do not evaluate the perplexity

Number of components in the

language of Scikit-learn.

We will carry out a grid search
over two parameters: The number

of topics and the learning decay.

Our model needs to be
instantiated before we are able
to use it. This is true for other
Scikit-learn models too.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 123

in training at all. Finally, a positive learning offset
down-weights early iterations of the online learning

method.

Let us search the parameters; in this case, we are requesting
a 15-fold cross-validation and iid=True means that we
want to get the average score across folds, weighted by the

number of samples in each test set.

from sklearn.model_selection import GridSearchCV

model = GridSearchCV(1lda,
param_grid=search_params,
cv=15,

iid=True)

Training the model may take some time, and in the end we

are interested in the best estimator found:

model.fit(tw_vectorised)

best_lda_model = model.best_estimator_

The best model obtained has the following parameters:

> print(‘‘Best Model’s Params: '’,

model.best_params_)

Best Model'’s Params: {’learning_decay’: 1.0,

"n_components’: 3}

As you can see, we seem to have 3 topics in the corpus. The

model’s score and perplexity are:

In this case we are performing a
grid search with a 15-fold cross

validation.

The best model out of the grid
search is returned with the

best_estimator_ method.

The chosen parameters for the best

estimator can easily be obtained.

124 J. ROGEL-SALAZAR

> print(‘‘Best Log Likelihood Score: '’',
model.best_score_)

Please remember that there is

Best Log Likelihood Score: -936.9353366306428 an element of randomisation in

the process and you may not get

exactly the same scores and results
> print(‘‘Model Perplexity: "', shown here.

best_lda_model.perplexity(tw_vectorised))

Model Perplexity: 730.704993701156

With the model trained, we can now create our
document-topic matrix and extract the dominant topic for

each document: Once we have the model, we can

create our document-topic matrix.

lda_output=best_lda_model.transform(tw_vectorised)

The output of the LDA model can be added to our original

dataframe:

topicnames = ['Topic’ + str(i) for i in

range (best_lda_model.n_components)]

tweets = pd.concat([tweets, The output of the model can be
pd.DataF rame (added to our original dataframe.
np.round(lda_output, 2),

columns=topicnames)], axis=1)

Finally, we can obtain the dominant topic for each of the

documents:

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 125

dominant_topic = np.argmax(

df_document_topic[topicnames].values, axis=1)

tweets['Dominant_Topic’] = dominant_topic

We can take a look at some of the results obtained:

> tweets[['Tweet’, 'Dominant_Topic’]].head(4)
Tweet Dominant_Topic
Oh... It is even worse... 0

RStudio 0S X Mavericks...

(<}

A Hubble glitch has pr...

=

@kwbroman Good questio...

The first and second tweets correspond to topic 0, the

second one to topic 2 and the fourth one to topic 1. We can

take a look at the distribution of the tweets among the three

topics:

df_topic_distribution = (
tweets['Dominant_Topic’'].\
value_counts().reset_index(
name="Num Documents"))
df_topic_distribution.columns = ['Topic Num’,

"Num Documents’]

This leaves us with the following distribution:

The dominant topic is the one

with the highest score.

And the results are in!

We can take a look at the

distribution of topics.

126 J. ROGEL-SALAZAR

> print(df_topic_distribution)

Topic Num Num Documents

1 125
2 107
0 92

Topic modelling tells us the most likely dominant topic

for each of the documents in our corpus. Nonetheless, we
must remember that the method is an unsupervised task
and therefore it cannot provide us with a label for each of
the topics. That falls to the human in the middle. In other
words, we may take a look at the words that are contained
in each of the topics and we can try to make sense out of
them. With that in mind, let us create a function that is able

to extract the top n_words from each of the topics:

def topic_words(model, feature_names, n_words=10):
for idx, topic in enumerate(model.components_):
print(’'Topic '.format(idx))
print(’ ’'.join([feature_names[i]
for i in topic.\

argsort()[: -n_words - 1: -11]))

The function above will provide by default the top 10 words
in each of the topics found in the training of our algorithm.
For our purposes, let us take a look at the top five words in

our topics:

Once again, your results may be

different from these ones.

We can take a look at the words
that make up each topic to

provide a label.

This function extracts the top
n_words in each topic for us to

assess.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 127

> topic_words(best_lda_model, tw_vectorised_names,

n_words=5)

Topic 0

rugbi via xma think use
Topic 1

new physic statist star time
Topic 2

data xkcd great scienc make

From the information above we can see that Topic 0 is a
general topic including tweets about rugby; Topic 1 can be
safely labelled as physics and science; and Topic 2 as data

science and machine learning.

Our last step is to use these new labels on unseen tweets.

Fortunately in this case we do have a testing dataset. Let us

take a look:
testtweets = ’'Test_QuantumTunnel_Tweets.csv’
testtweets = pd.read_csv(testtweets,

encoding="utf-8")

We need to perform the same processing done to our

documents, and this can easily be carried out by applying

the tw_preprocess function defined above to our test tweets:

testtweets[’'Processed_Tweet’] = \

testtweets[’'Tweet’].apply(tw_preprocess)

Et voila!

I can say it is a general topic given
the familiarity with the documents.
It may not be that obvious in other

corpora!

We need to apply the same
processing to unseen documents

for scoring.

128 J. ROGEL-SALAZAR

We will need to apply the vectoriser transformation to our
new documents and then the model itself so that we can get
the dominant topic. All this can be done with the following

function:

def determine_topic(x, vec, model):
mytext = [x]
vec_transf = vec.transform(mytext)
topic_prob_scores = model.transform(vec_transf)

topic = np.argmax(topic_prob_scores)

return topic

All is left to do is to apply this function to our dataset:

testtweets[’'Topic’]=testtweets[’'Processed_Tweet’'].\
apply(determine_topic, vec=vectoriser,

model=best_lda_model)

Together with the processed tweets, the results can easily be
saved if we wanted to. For now, we can take a look at some

of the predictions made:

> testtweets[['Tweet’, 'Topic’l].tail(3)

Tweet Topic

knitr in a knutshell tutorial htt... 2
Up all night to get data, a music... 0
A survival guide to Data Science ... 2

And there you have it, LDA is served!

This function lets us score unseen
documents with the trained model

obtained.

And there we have it, topic

modelling completed!

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON

2.7 Summary

THIS CHAPTER HAS A LOT of very useful information to
deal with unstructured data such as text. We started our
discussion by defining what natural language is, and how
natural language processing is concerned with
programming computers to process and analyse large
amounts of natural language data. That sounds like
something a good Jackalope data scientist should master,

right?

We saw how to use Python to access data directly from the
web, and in particular we saw the use of Beautiful Soup to
scrape data from webpages. This required an understanding
of HTML and the way information is organised in terms

of tags. Beautiful Soup enabled us to scrape data from a
page containing the Iris Dataset and we got to grips with
using tags, navigable strings, comments and Beautiful Soup

objects in general.

We also covered the use of regular expressions to capture
specific patterns in a piece of text that is of interest to us.
We discussed some regular expression patterns and
familiarised ourselves with the re module in Python. This
led our discussions to the processing of text in Unicode and
we addressed some of the ways in which Python deals with
encoding issues. We even played with writing in Japanese

and processed the characters appropriately.

As part of the process of understanding text, we discussed

tokenisation and used NLTK as a way to extract meaningful

129

130 J. ROGEL-SALAZAR

tokens out of our text. We did this with the help of available
methods as well as creating our own, based for example on
regular expressions. NLTK was also used in the context of

stemming and lemmatising our tokens.

We saw how it is possible to use part-of-speech (POS)
tagging on our tokens so as to be able to distinguish
between important elements in a natural language, e.g.,
verbs, adjectives, nouns, clauses, etc. We used POS tagging
in a US presidential speech to extract named entities

mentioned.

Finally, we discussed topic modelling as an unsupervised
learning task to identify the possible themes or topics that
are addressed in a set of documents. The Latent Dirichlet
Allocation algorithm, or LDA, was our main discussion
point and we applied it to a corpus of tweets we had used
before in the context of the naive Bayes classifier. C-3PO

watch your step, here we come!

3

Getting Social: Graph Theory and Social

Network Analysis

NETWORK ANALYSIS ENCOMPASSES THE STUDY of relations
between interconnected entities. It is based on the use of
graphs to represent those entities (called nodes or vertices)
and their connections (called edges, arcs or lines). These
graphs can be layered with attributes and can also be

rendered as diagrams.

Network analysis has a large number of applications, from
statistical physics to biology and from communications to
finance. In particular, their application to undestanding
social structures has gained prominence in behavioural
organisational settings as well as psychology, political

science and sociology.

As you can imagine networks can be varied, and the field
tends to be rather multidisciplinary. In this chapter we will

introduce network analysis for social relationships.

Graph in the mathematical sense;
not to be confused with a plot or a
chart.

Applications of network analysis

can be quite wide.

132 J. ROGEL-SALAZAR

However, the tools and methods we will cover can readily
be applied to a variety of other areas. Once you start
looking through the lens of a graph analysis, you may start

seeing networks everywhere.

3.1 Socialising Among Friends and Foes

AN INTEGRAL PART OF BEING human is our ability to
identify a variety of structures and patterns. That is also
certainly true when it comes down to social relationships
between individuals, organisations, teams, countries, etc.

Think about your own social relationships, there are people You may want to hug your friends

(please do!), and through the Holy
with whom you have a strong social bond such as your Hand Grenade of Antioch towards
close family and friends. You may even have met friends of ~ thy foe! (please don’t!).
friends, some of whom have become closer to you over time.

Others may not and in some situations they may even have

become your nemeses.

The purpose of social network analysis (or SNA for short)

is to understand the relationships between actors with a

tie. The actors in the network are referred to as nodes or Here, we will refer to nodes and
vertices and the ties are usually called edges (undirected), cdges.
arcs (directed) or lines. In a social network, the nodes are

usually people and the edges represent a social connection

between them. The focus of analysis is not necessarily at the
individual level, instead we are interested in the connections

that are embedded in the network. In other words, we

would like to understand what information passes through

the network.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 133

It is easy to see that relationship between actors in the

network carries some meaning. Going back to thinking

about your own social relationships, the meaning may

represent the level of affection, membership, or

communication, etc. These ties can have a direction. Directed graphs have edges with

. . L7, 7 i ion, ith
Consider for example the relationship “love” where the direction, represented with an

arrow.

feeling may sadly not be reciprocated. In those cases, we
have a directed graph. However, in a situation where the tie
means “shared interests” the relationship is directionless

and we therefore have an undirected graph.

Figure 3.1: An example of a social

. . . network with directed edges.
In the network shown in Figure 3.1, we can see a directed 8

network where the arrows indicate the direction of the

relationship. We can see that Michael and Terry] have a

. . We know it is directed as the
mutual relationship, as well as Terry] and Graham. John .
edges are represented with

has two outgoing relationships (with Terry] and Terry G) arrows.

and one incoming relationship with Eric.

134 J. ROGEL-SALAZAR

Sometimes it is useful to concentrate our exploration of a

network on a specific node. Within a social network context,

we refer to those subsets as ego networks. The ego network
for Terry G in our example can be seen in Figure 3.2. As
you can see, this enables us to focus only on the edges that

connect the node of interest with the rest of the network.

Ego networks concentrate on a
specific node in the network.

The ties that connect the nodes in the network can tell

us things regarding how strongly (or weakly) the actors
interact. We can identify clusters in the network exhibiting
characteristics such as homophily, that is the tendency of
individuals to associate and bond with similar actors, or
transitivity, i.e., when there is a tie from node i to node j,
and also from node j to node k the relationship is transitive

if there is also a tie from i to k (see Figure 3.3). We can

Figure 3.2: The ego network for
Terry G. Only the related nodes
are highlighted and the rest are
dimmed down for clarity.

Homophily — “Birds of a feather
flock together”.

Transitivity — “Friends of my

friends are my friends”.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 135

also distinguish cliques which are densely, fully connected

components in the network.

Transitive Intransitive

All these relationships can be uncovered, studied and
understood using the tools developed by the branch of
mathematics known as graph theory. It has a long and
distinguished history starting in the 18" century with the
Swiss mathematician Leonhard Euler solving a pass time
puzzle that entertained people in the old Prussian city of
Konigsberg, now Kaliningrad, Russia. The layout of the city
connected four land masses divided by the Pregel river by
seven bridges. The puzzle challenged the walker to find a

way through the city crossing each bridge only once.

Leaving behind the geographical position of the land masses
and the bridges, Euler’s solution consisted instead of
concentrating on the connections®. The result can be
represented with a graph. See our depiction in Figure 3.4.
Euler’s approach laid the foundations of network theory as

we know it today.

The nodes in Figure 3.4 represent the land masses and the

edges are the bridges. When looking at the problem in this

Figure 3.3: Transitivity in a
network.

Graph theory is at the heart of

social network analysis.

* Euler, L. (1736). Solutio
problematis ad geometriam
situs pertinentis. Comment. Acad.
Sci. U. Petrop. 8, 128-140

136 J. ROGEL-SALAZAR

way and according to the puzzle rules, you can see that
when you arrive to any particular node via an edge you
will need to leave it via a different line (unless it is the final
destination!). This means that any node that is neither the
starting, nor the ending position requires to have an even
number of lines, in other words, for every bridge used to

enter, there needs to be one bridge to leave.

This means that to be able to have a walking journey that
crosses every edge once, at most two nodes can have odd
number of edges. As we can see from the graph in Figure
3.4, all nodes have an odd number of edges and as such the

puzzle has no solution. Voila!

Graph theory is therefore the study of relationships: Given a
set of edges and nodes, which can be references to people,
computer networks, companies, atoms, etc., it is possible to
quantify and understand a variety of dynamic systems. If
the nodes were cities and the edges refer to routes
connecting those cities, we end up with a classical problem
known as the travelling salesman problem where given a finite

number of cities, along with the cost of travel between each

Figure 3.4: A schematic
geographical representation

of the seven bridges of Konigsberg
and a network highlighting the
connectivity of the four land
masses in question.

You can follow this discussion

with the network shown in Figure

3.4

Either two nodes, or none at all!

The travelling salesman problem
is a classic algorithm problem in

computer science.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 137

pair of cities, the task is to find the cheapest way of visiting

all of the places and returning home (i.e., the starting point).

The problem can be posed in a variety of ways. A great
example is the puzzle game invented in the late 1850s by
the mathematician William R. Hamilton known as the
Icosian game® where the aim is to find a Hamiltonian cycle,
in other words, a graph that visits each node only once,
along the edges of a dodecahedron. The travelling salesman
problem is a computationally difficult problem, and a large
number of heuristics and exact methods are known to tackle
it; in some instances, a solution can be found for tens of

thousands of cities.

Ever since Euler’s incursion in the field, mathematicians,
physicists, biologists, chemists, engineers and social
scientists have found uses for graphs. Given our interest in
social analysis, perhaps it is illustrative to explore some of
these applications. A great place to start is the game that the
characters in Frigyes Karinthy’s short story Chains3 create:
Find the chain that connects two individuals through at
most five acquaintances. This is the beginning of the
small-world experiments that gave us the notion of the six

degrees of separation.

During the 1960s the experimental psychologist Stanley
Milgram devised a series of experiments to prove the
existence of short paths (the eponymous six degrees) among
social connections*. The main aim was to test the notion
that the world has shrunk in an ever interconnected world.

Today the experiment may seem a bit rudimentary given the

2Ball, W.W.R. and Coxeter, H.S.M.
(1987). Mathematical Recreations and
Essays. Dover Recreational Math
Series. Dover Publications

Actually it is an NP-Hard
problem.

3 Karinthy, F. (1929). Chains in
Everything is Different. Online
at http:/ /bit.ly /karinthy_chains.
Translated from Hungarian and
annotated by Adam Makkai.
Edited by E Janké

4Milgram, S. (1967). The small
world problem. Psych. Today 1(1),
60-67

http://bit.ly/karinthy_chains

138 J. ROGEL-SALAZAR

social media tools we have at our disposal, but back in the
1960s the mere idea of interconnectedness was put to the
test. In one of the experiments for example, Milgram
arranged for 96 packages to be sent randomly to chosen
people living in Omaha, Nebraska. Each package contained
instructions for each recipient telling them to get the
package back to a friend of his who lived in Boston,
Massachusetts. The name of the ultimate recipient was
provided, along with his address and his occupation (a

stockbroker).

The task requested that each recipient of a package send

it to a person they knew on a first-name basis and who
they felt would be socially closer to the ultimate addressee.
These new recipients were in turn asked to do the same
until, of course, the package was hopefully received by

the stockbroker in Boston. The lucky Bostonian received
18 of the 96 original packages, and the mean number of
the connections from start to end turned out to be around
5.9, leading to the famous 6 degrees everyone, including

ourselves, is talking about.

The imagination of a lot of us has been captured by this
“small world” phenomenon, but the real surprise is the
easiness with which, using local information, it is possible
to navigate a large social network. So much so, that similar
challenges have kept film trivia boffins entertained with
calculating the so-called Bacon number where the aim is to
find the shortest path that connects any given actor to Mr.

Kevin Bacon in terms of having worked together.

They were randomly chosen from

a telephone directory!

18 of the 96 packages reached their
destination with a mean number

of connections equal to 5.9.

The Bacon number connects any

given actor to Mr. Kevin Bacon.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 139

The Bacon number is in fact an application of the Erdds
number used and abused by mathematicians to describe

the distance of academic collaboration with the prolific
Hungarian mathematician Paul Erdos. The measurement

is the authorship of papers that connect mathematicians:
Erdos himself has number 0; those mathematicians who
co-authored a paper with him have an Erdos number of 1,
co-authors who have penned a paper with a scientist whose
Erdos number is 7 have an Erdds number equal to 7 + 1. The
calculation is given by the so-called shortest path algorithm
which aims to find a path between two nodes such that the

sum of the weights of the edges is minimal.

There is even a combined Erdés-Bacon number which is the
sum of someone’s Erdds number with their Bacon number.
Some of my favourite nodes in the network that intersects
thespians with scientists include Mayim Bialik of The Big
Bang Theory fame and Natalie Portman (aka Star Wars’s
Queen Amidala among other characters) both have an Erdos
number of 5 and a Bacon number of 2 (as of 2018), leaving
them with an Erdds-Bacon number of 7. Carl Sagan and
Stephen Hawking both have an Erd6s-Bacon number equal

to 6 (Bacon= 4, Erdos= 2).

The work of Duncan Watts and Steve Strogatz on
small-world networks> has become so influential that these
networks are often referred to as Watts-Strogatz networks. It
is important to mention that the wide preference is to use
the term specifically to describe graphs with a small mean
geodesic path length and significant local clustering. We

will come to explain some of these terms in the next section.

The Erdés number connects any
given mathematician to Paul
Erdos.

The sitcom by the way, not the

event that created the Universe.

5 Watts, D. and Strogatz, S. (1998).
Collective dynamics of small-
world networks. Nature 393(1),

440-442

140 J. ROGEL-SALAZAR

These days, the opportunities to analyse social media data
are open to a lot of us, from using Twitter data® to help
better define the term digital humanities, all the way
through to finding what combinations of flavours make

some dishes taste great”.

Some applications could be as complex as understanding
the symptoms experienced by cancer patients undergoing
chemotherapy®; or simply visualising the relationships
between philosophers over centuries®. We need to be
mindful, of course, of the data privacy issues that may arise
when sourcing information from various social media
platforms and other sources of information. This is not just
important in the analysis of social networks, but indeed
more general to any data science work we are involved with.

Be a good Jackalope data scientist!

3.2 Let’s Make a Connection: Graphs and Networks

Now THAT WE HAVE A better idea of the applications and
usefulness of networks, it is time to provide some of the
notions that underpin the framework that enables us to
understand the connections (edges) between the actors
(nodes) in a given network. That framework is largely built
around graph theory, a branch of mathematics interested in
the properties of graphs. As we saw in the previous section,
the basic idea of graphs was introduced by Euler and in this
section we will address some important aspects we need

to understand to work with graphs, but we will not cover

graph theory in its full glorious interconnectedness.

¢ Grandjean, M. (2016). A social
network analysis of Twitter:
Mapping the digital humanities
community. Cogent Arts and
Humanities 3, 1-14

7Simas, T. et al. (2017). Food-
Bridging: A new network
construction to unveil the
principles of cooking. Frontiers in
ICT 4, 14

8 Papachristou, N. et al. (2019).
Network Analysis of the
Multidimensional Symptom
Experience of Oncology. Scientific
Reports 9(1), 2258

9 Noichl, M. (2017).

Relationships between
Philosophers, 600 b.c - 160 b.c.
https:/ /homepage.univie.ac.at/
noichlmgy/full/Greeks/index.html.
Accessed: 2019-02-18

Graph theory is a branch of
mathematics interested in the

properties of graphs.

https://homepage.univie.ac.at
https://homepage.univie.ac.at

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 141

Up until now we have defined a graph in a loose way. Let
us correct that and define a graph G as an object that
consists of a collection of nodes or vertices V, and arcs or
edges E, that connect pairs of vertices and can be expressed
as G = (V,E). We will refer to an arc as a directed
connection between two nodes. If we consider two nodes v;
and v, in G, an arc will be denoted as the ordered pair
(v1,v2). If the connection is undirected, we will refer to it as
an edge and will be denoted as (v; : v2). Notice that the

order in this case is irrelevant.

The neighbours of a node v; are denoted as N(v;) and are
all the nodes immediately connected to v;. A walk in graph
G is a sequence that traverses the graph from neighbour

to neighbour. The length |s| of the walk is the number of
lines it contains. A walk is closed if the starting and ending
points are one and the same node. There are other kinds of

walks:

* A trail is a walk where no lines (i.e., arcs or edges) are

repeated. This was the aim in Euler’s Konigsberg puzzle:

We cannot use the same bridge again.

* A path is a walk where no nodes are repeated. Using the
Konigsberg arrangement, this would be a case where we

cannot visit the same land mass more than once.

* A cycle is a closed walk where all the nodes are different.

In contrast, an acyclic graph does not contain any cycles.

¢ A chain or semi-walk is a walk where the direction of

the lines is not considered.

G = (V,E) denotes the graph G
with nodes V and edges E.

A walk is a sequence that traverses
a graph from neighbour to

neighbour.

There are other kinds of walks,
such as trails, paths, cycles and

chains.

142 J. ROGEL-SALAZAR

The distance of shortest length between two nodes is

denoted as d(v;,v;). We can take a look at the largest

(maximum) distance between any two vertices in the graph, = The diameter of a graph is the
ie., maxy, . cv d(v;,v;). This is the diameter of the graph path of maximum length.
and is denoted as diam(G). On the other hand, the shortest

paths are called geodesic paths. Remember: No repeated nodes.

Consider the graph in Figure 3.5, the distance from node

1to2isd(1,2) = 1 and the distance from node 1 to 4 is

d(1,4) = 4.

Figure 3.5: An example graph
with seven nodes, and two sub-

If the nodes are not connected, then d(v;,vj) = oco. This graphs.

means that the graph is disconnected, and thus the vertices

v; and v; live in separate parts of the graph, such as nodes 1

and 7 in Figure 3.5, where we can clearly see the A disconnected graph has paths

with distances equal to infinity

disconnection too. If the relationship in the graph was ()

communication between actors, this situation would mean
that there is no way for any messages to be passed between

nodes 1,2,3,4,5 and 6,7 in our example graph.

We say that node v; is reachable from node v; if and only if

(iff) there is a walk starting at v; and ending at v;. We have

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 143

a weakly connected node iff there is a semi-walk between
nodes v; and v;. Iff both nodes are reachable, then we have As we can see, it is possible to

. h, ise th f
a strongly connected pair of nodes. In our example graph, characterise the connectedness o

our graphs.
node 4 is reachable from node 1 (as are nodes 2 and 3);
node 5 is weakly connected to 1. Nodes 3 and 4 are strongly
connected. Notice that nodes 6 and 7 are also strongly
connected, as we are assuming that the lack of arrows in the
line indicates bidirectionality and therefore the relationship

is undirected.

We have seen a typical depiction of a network showing the

connections among neighbours and, if appropriate, the

direction of those connections. It is possible to represent a

graph with the help of an adjacency matrix, i.e., a square

matrix whose elements indicate whether a pair of vertices An adjacency matrix indicates

are connected or not. In an undirected graph, the matrix is whether two nodes are connected

symmetric, and typically we will show a 0 if the nodes are ot
not connected and a 1 if they are. Values different from 1

are possible, and this would indicate the strength or weight

of the connection.. The adjacency matrix for the graph in

Figure 3.5 is given by:

This is the adjacency matrix for

(1) the graph in Figure 3.5.

N SN U e QN -

O O O O O O O M
O O O O Rk O N
O O Rk Rk O O =, W
O O O O Rr O O W
S O O O O O O u
= O O O O O o o
O = O O O O O

144 J. ROGEL-SALAZAR

Notice that only the entries for nodes 3 and 4, and 6 and
7 are symmetric. For the rest, we need to read the matrix

row-by-row to find the connections.

You may have noticed that there is a large number of zero
entries in the adjacency matrix. Computationally speaking,
it may be possible to store this information in a sparse
matrix. An alternative way to store the information
contained in the adjacency matrix is via an edge list where
each entry is given by a pair of vertices that are connected.

The edge list for our example graph is given by:

G =1[1,2],[1,3],[3,2],[3,4],[43],53],6,7],7,6]. (32

Finally, a way that combines the connectivity format of

an adjacency matrix with the briefness of an edge list is
the adjacency list. In this case, for each node in the graph
we store a list that contains the nodes adjacent to it. If the
graph is weighted, we can add the weight to the connected
node too. The adjacency list for our example graph is as

follows:

G = [[1—1[23], (3-3)
3 — [2,4]],
[4 — [3]],[5— [3]],
[6 — [7]],[7 — [e]]).

It is possible to define a partition of nodes V as the set of
subsets of nodes C = {C;} such that the union of C; is equal
to V and for subsets C; N C; = @ (with i # j). In other

If the graph is weighted, the entry
is a triplet: The first two elements
being the nodes and the third one
is the weight.

An adjacency list combines
the connectivity format of
an adjacency matrix, with the

briefness of an edge list.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 145

words, the subsets do not overlap and when looking at , ,
Each equivalence relation
them together as a whole they regenerate the original set V. determines a partition into
We can also define an equivalence relation R on V iff it is equivalence classes, and vice
reflexive (Vo € V : vRv), symmetric (Vu,v € V : uRv — vRu) e

and transitive (Vu,v,z € V : uRz A zRu — uRwv). Each

equivalence relation determines a partion into equivalence

classes [v] = {u : vRu}; and each partition determines

an equivalence relation. Weak and strong connectivities as

defined above are equivalence relations, defining weak and

strong components.

3.2.1 Taking the Measure: Degree, Centrality and More

WE ARE NOW WELL CONNECTED with the idea of a graph Pun definitely intended!
and we have defined a number of attributes related to it. In

this section we will define characteristics of the nodes

themselves as well as characterising the relationship

between the nodes in a graph.

Let us start by defining the degree of a node v, deg(v),

as the number of edges that are connected to node v. In

Figure 3.5 the degree of nodes 1 and 3 are deg(1) = 2 and The degree of a node is the
number of edges that are

deg(3) = 4, respectively.

connected to it. The in- and
outdegrees are only applicable to

The outdegree is only applicable for directed graphs and directed graphs.
outdeg(v) is the number of arcs outgoing from node v.

Similarly, the indegree, indeg(v) is the number of arcs

incoming to node v. In our example graph above, for node

1 we have that outdeg(1) = 2, and indeg(1) = 0; whereas for

node 3, the measures are outdeg(3) = 1, and indeg(3) = 3.

146 J. ROGEL-SALAZAR

The centrality of the nodes is another important attribute
that gives us information about the most prominent actors
in a network. Centrality in this case refers to how well
connected a node is to the rest of the network. We can think
of highly connected nodes as power centers, or information
hubs. As such a higher centrality is judged to be an
important asset for a node. We already know how to
calculate the degree centrality of a node: It is simply the

degree measures we defined earlier on.

There are other types of centrality, such as the so-called
betweenness, which is useful in measuring the influence
that a particular node has over a network. We can think of
this measure as a way to finding bridges between different
components of a graph. Betweenness centrality is calculated
by the shortest (weighted) path between every pair of nodes
and is given by:

sw) = ¥, =, 6.9

atv#b ab

where 0, is the number of geodesic paths from node a to
node b and 0,;,(v) is the number of those paths that pass

through node v.

There are cases where we may be interested in finding out
which nodes are able to spread information more efficiently
through the network. In those cases, the centrality measure
we are interested in is called closeness. The closeness
centrality of a node is proportional to the inverse of the
average distance from the node to the rest of the network. In

this way, a node with high closeness centrality has the

In other words, how central the

node is.

Betweenness tells us about the
influence of nodes over the graph,
thinking of them as bridges over
the network.

Closeness centrality tells us about
the nodes that are able to spread
information more efficiently in the

network.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 147

shortest distances to all the other nodes. This can be

expressed as follows:

Clv)= == (35)

where d(v, x) is the distance between nodes v and x, and N
is the number of nodes in the graph. Closeness centrality is
sensitive to the size of the graph. As you intuitively know, it
is harder to keep a close relationship with every single one
of the members in a network, and as the network grows in
size this gets harder and harder. Multiplying by the number

of nodes provides a form of correction for this situation.

In some cases, instead of asking how efficient the
communication between nodes may be, we may be
interested in finding out how well-connected the actors in
our network are. This can be seen as an extension to the
degree centrality we discussed earlier on. The indegree
centrality scores a point for every link a node receives;
however, in a more general case, not all nodes are equivalent
and there may be some that are more relevant / powerful /
important than others. This is effectively a case of being
endorsed by influential nodes. This can be measured by the
eigenvector centrality which tells us that a node is

important if it is linked to other important nodes.

A node receiving many connections does not necessarily
have a high eigenvector centrality score (the actor can have a
lot of friends, but none are in high places); furthermore, a
node with a high eigenvector centrality score is not

necessarily highly linked (the actor has a few but very

Closeness centrality is sensitive to

the size of the network.

This is the equivalent of “having
friends in high places”.

Eigenvector centrality tells us
that a node is important if it is
connected to other important

nodes.

148 J. ROGEL-SALAZAR

important friends). To calculate the eigenvector centrality,
we take advantage of the matrix representation of the graph
and calculate its eigenvectors. First of all, we need to
calculate a measure that is proportional to the sum of the

scores of all nodes connected to a given node, i.e.:

X; = % | 2 Xj, (3.6)
jeM(i)
where the sum is over all j € M(i) such that the nodes j
are connected to the node in question (7). Another way to
calculate this is using the adjacency matrix A and we let x
be the vector that has the centrality scores enabling us to

write the following eigenvector equation:
Ax = Ax, (37)

where A is called the eigenvalue. Our task is to find A,

and in general there may be multiple non-trivial solutions
to the problem. We need to use an extra tool from our
Jackalope data scientist belt: If we require that all the entries
in the eigenvector are non-negative, thanks to the Perron-
Frobenius theorem'®, there is only one eigenvalue that
satisfies this requirement! This corresponds to the largest
eigenvalue and that is good enough for ranking our nodes

in terms of this centrality measure.

The PageRank algorithm, famously used by Google Search
to rank webpages, is a variant of eigenvector centrality. It is
used to determine the importance of a webpage considering
the number of links it gets, the link propensity of other
pages and the centrality of those pages.

Hence the name!

Surely you can recognise this as an

eigenvector equation.

° Bapat, R., R. Bapat, T. Raghavan,
C. U. Press, T. S, G. Rota, B. Doran,
P. Flajolet, M. Ismail, T. Lam, et al.
(1997). Nonnegative Matrices and
Applications. Encyclopedia of
Mathematics and its Applications.
Cambridge University Press

PageRank is a variant of

eigenvector centrality.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 149

We can calculate the PageRank centrality of a node as

follows:

o ki
xl_w;outdeg(k) xk+ﬁr (38)

where « and B are constants, outdeg(k) is the outdegree of
node k, and ay; is the (k, i) entry in the adjacency matrix for Note that if the outdegree of k is

the graph. We can write this equation in matrix form as null, we require that outdeg(k) = 1

in this calculation.
x = axD7'A + B, with D! being a diagonal matrix with
k-th diagonal element equal to 1/outdeg(k). We can solve
for x as x = B(I —aD~1A)~!. We call a the damping factor,
and its value should be chosen between 0 and 1/p(D~'A),
where p(D~1A) is the largest eigenvalue of D~!A. It must
be said that for large networks, it is more efficient to
compute the PageRank via power iteration, as it does not See more about power iteration in
have to deal with matrix decomposition and it works very Appendix B.

well with sparse matrices.

3.2.2 Connecting the Dots: Network Properties

WE HAVE DESCRIBED A FEW attributes that characterise
the individual nodes in a graph, and although they are

important, the power comes from the collective properties We are interested in
that the nodes provide to the whole network, as they show understanding the aggregate
effects individual nodes have on

the structure in the relationships between the actors. The the whole network.
emerging properties of the network as a whole provide us
with a view of the aggregate effects individual nodes have

on the whole.

For instance, looking at the different centrality measures Centralisation is an important

. . . . characteristic of a network as a
discussed in the previous subsection, we can take a look

whole.
a the centralisation of the overall graph. In other words,

150 J. ROGEL-SALAZAR

we can measure how even the scores of the nodes are. If
they are evenly distributed we can talk about distributed
networks, where every node is as central as any other. If the
scores are not even, we refer to centralised networks, where

one node is maximally central, and the rest are not.

This brings us to the concept of the density of the network.
It is a measure of how the network nodes are connected to
each other. In the case where all the nodes are connected to
one another, we have a complete graph and the density is
equal to one. Formally speaking, the density D(G) of graph
G is defined by the number of existing edges, m, in the

graph, compared to the total number of all possible edges:

2m

D(G) = a1 (3.9)

The value of D(G) ranges between 0 and 1. In many real

situations, the density of a graph is low. Think of a typical
network in social media: A user will be connected to a few
other users, while the actual network contains many, many

more.

Now that we know about network density, it is
straightforward to talk about cliques or clusters in the
network. We are interested in knowing how much the nodes
tend to form dense subgraphs, i.e., cliques or clusters. In a
way, this is related to figuring out if two people are friends
given that each person is friends with a common third party.

We call this the local clustering coefficient, and it is given

The density measures how nodes

are connected to one another.

The total number of possible edges

is given by n(n —1)/2.

Cliques are densely, fully
connected components in the

network.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 151

by the following expression:

L0
"= deg (i) (deg() 1) (3.10)

In other words, this is the ratio of the pairs of friends of v;
who are friends among themselves, T(i), and the total
number of pairs of v;’s friends. T(7) is given by the number

of closed triangles with node v; as one of the vertices,

whereas the total number of pairs of v;’s friends is given by:

B0 (deg(i)). (311)

In turn, the clustering in the network can be measured by

the average clustering coefficient:

1
c=- Y Ci, (3.12)
where 7 is the number of nodes in the graph.

A closely related measure to the clustering coefficient is
the transitivity of the network. The average transitivity of
a network is defined over the number of triangles in the
graph:

3(num. of triangles)

Transitivity = ,
Y (num. of connected triples)

(3-.13)

where a connected triple is any trio of nodes i, j, k that forms
an open triangle, for example with connections between

i and j, and i and k. Notice that a closed triangle can be
thought of as being composed of three open triangles.
Transitivity measures the fraction of open triangles that are

actually closed.

The local clustering coefficient.

The average clustering coefficient.

We introduced the concept of

transitivity on page 134.

Hence the factor of 3 in the

formula.

152 J. ROGEL-SALAZAR

We are interested in the clustering coefficient and the
transitivity of a graph as they can be used to check for

structural holes in the network. In other words, these

measures show missing links between neighbours of a node.

They give us information about the efficiency of information
diffusion in the network, as well as how robust it may be to

disruptions.

We may also be interested in identifying the giant
component of a network. This is the largest strongly
connected subgraph in a large network such that its size is a
constant fraction of the entire graph as the latter grows in
size. If Nj is the size of a connected component K in a
network with N nodes, then K is a giant component if:

lim % =c>0, (3.14)

N—oo

with ¢ being a constant.

Once we are able to detect cliques and giant components, it
is natural to ask if the network exhibits clusters that are not
densely connected to others, but which are densely
connected within themselves. We can think of these
situations as having different “communities” within the
network. Community detection is a hot research topic as it
is an NP-complete problem and in many cases the full
exploration of the entire network is required. The task in
community detection is to find a subgraph S of G(V,E)

where the nodes Vs € V share some similarity.

One way we can start detecting groupings in a network is by

finding sub-graphs which keep nodes connected as we

The giant component is the largest
strongly connected graph in a

network.

NP-complete means that we can
verify the answer quickly, but sadly
there is no known way to find a

solution quickly.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 153

traverse the graph. In other words, we need to find a
k-component of the graph. We define a k-component as a
maximal subgraph with, at least, connectivity k. Put in a
different way, if we wanted to break that subgraph into
more components, we would need to remove at least k
nodes from it. The algorithm from Moody and White'' can
help us with this task. Note that there is a hierarchical
nature to the structure of k-components in that the
subgraphs are nested from a connectivity point of view: A
given network can have a number of 2-components, which

in turn can have one or more 3-components, and so on.

In terms of community detection, an algorithm usually
employed for this purpose is the Girvan-Newman
algorithm."? It aims to find the communities in a network
by iteratively removing edges from the initial graph; as such,
the remaining connected components are deemed to be the
communities. The algorithm extends the definition of
betweenness to the edges of the network, with edge
betweenness being the number of geodesic paths between
pairs of nodes that pass through a given edge. The idea is
that separate communities are connected via edges with
high edge betweenness. If we remove these edges, the

community structure is unraveled.

There are a number of algorithms attempting to find
community structures in networks'3 from graph
partitioning and hierarchical clustering through to
optimisation and generative model techniques.
Unfortunately, we do not have the remit to cover these

methods at length, but we can highlight the Louvain

" Moody, J. and White, D.
(2003). Social cohesion and
embeddedness: A hierarchical
conception of social groups. Am.
Soc. Rev. 68(1), 103-128

2 Girvan, M. and Newman, M.E.]
(2002). Community structure in
social and biological networks.
Proc. Natl. Acad. Sci. USA 99,
7821-7826

3 Fortunato, S. (2010). Community
detection in graphs. Phys.
Rep. 486(3-5), 75-174

154 J. ROGEL-SALAZAR

method'™# used to detect communities in large network 4 Vincent D Blondel, Guillaume,
. L J.-L., Lambiotte, R., and Lefebvre,
settings based on a greedy optimisation approach. At the E. (2008, Oct.). Fast unfolding of

communities in large networks.
J. Stat. Mech-Theory E 2008(10),

the concept of modularity as a way to quantify how P10008

heart of both the Girvan-Newman and Louvain methods lies

cohesive the communities in a network are.

We can define modularity in terms of the adjacency matrix
of the graph, A and the sum of the edge weights attached to
anode i given by k; = Y Aij:
1 klk]
Q=5 Z [Aij - Zm] (ci,cj)- (3-15)

i,j

Each term in the sum contributes to the overall modularity
measure by comparing nodes being in the same community

¢;- The Kronecker delta function (c;, ¢;) is equal to 1 if In other words, if both nodes

are in the same community we
i = j; if not, the nodes are not in the same community and multiply the contribution by 1,
d(ci,cj) = 0. The total edge weight in the entire network is otherwise by 0.

given by m = %Zi/]’ Ajj.

Let us try to get a better understanding of each contribution

to the expression above: We know that k; is the total of the

edge weight attached to i. We can consider a situation

where node i assigns this edge weight randomly to other A dissection of the modularity
nodes in a way that is proportional to their own edge terms in Equation (3.15).
weight values. In that case, 2% is the average fraction of

node i’s edge weight that would be assigned to node j. Put

in a different way, each contribution tells us how strongly

nodes i and j are connected in the actual graph, in contrast

to the case where the nodes are connected in a random

network.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 155

The Louvain method proceeds in two steps. In the first step,

we start up by assigning each node to its own community. In a network with N nodes, we
We calculate the change in the modularity score defined start with N communities.
above caused by removing each and every node from its
current community, and placing them in the community

of one of their neighbours. If the changes are negative, we
keep the node in the current community, but if the changes

are positive we assign the node to the community that

generated the highest change.

The second step makes use of the newly created

communities from the first step. These communities are

effectively the nodes of a new network. In this new network,

the edge weight is given by the total of all the edge weights

between the new nodes. There are also self-loops whose Iterations over the two steps in

the Louvain algorithm return the

weights are given by the edge weights within each
communities in the network.

community. We then simply do repeated iterations of these

two steps until there is no improvement in the modularity

measure and the communities are therefore said to be

stable.

The Louvain algorithm is fast compared to other methods
and provides a hierarchical community structure that can
shed light to the networks under scrutiny. However, due
to the merging of communities that happens during the

second step detailed above, detecting small groupings in Be aware that the Louvain

algorithm may result in poor
a large network results in poor resolution. It is important resolution of the communities in
therefore to be aware that for sufficiently large networks, the network.
the algorithm may not return the expected communities.
The other issue that we need to take into account is the fact

that determining a global maximum may not be possible,

156 J. ROGEL-SALAZAR

resulting in a degeneracy where several solutions with

maximum modularity scores are possible.

3.3 Social Networks with Python: NetworkX

WE ARE GOING TO USE NetworkX to analyse networks, but
before we do that let us get acquainted with the module.
NetworkX is a Python module that enables us to carry out
computational network modelling tasks. It is effectively a
memory graph database with some good rendering
capabilities that let us draw the graphs we analyse.
Although it is not ideal for truly large-scale applications, it
is a good package that a Jackalope data scientist can use for

analysing networks (social or otherwise).

It is possible to represent various network types with
NetworkX including directed and undirected graphs, as
well as multigraphs. Furthermore, the nodes in our graphs
can be any hashable object, and the edges can contain
arbitrary data. The package comes with a variety of useful

algorithms, and it is easy to use.

3.3.1 NetworkX: A Quick Intro

LET US START BY IMPORTING the NetworkX module,

alongside some other useful ones:

import networkx as nx
import numpy as np

import matplotlib.pyplot as plt

NetworkX is a Python module for
analysing network/graph data.

Think metadata!

A canonical abbreviation for

NetworkX is nx.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 157

We need to instantiate a graph object to which we can add

nodes:

g = nx.Graph()
g.add_node('A")

The nodes can also be added from a given list. In this case

we will need to use the add_nodes_from method:

g.add_nodes_from([’'B’, 'C'])

From our discussion in Section 3.2 we know that apart from

nodes, we also need edges. These can be added as follows:

g.add_edge(’'A’, 'B')

In this case we are adding an edge between nodes A and B.

We can also add edges from a list of tuples:

g.add_edges_from([('C’, 'D’'),
("E’, "F)1)

Note that in this case we are adding edges between nodes
C and D on the one hand, and E and F on the other one.
NetworkX is smart enough to figure out that although the

nodes have not been defined, they get created as required.

Finally, we can also add weighted edges. In this case we
require a tuple with three entries, the first two entries
correspond to the nodes to be connected, and the third entry

is the weight:

We need to instantiate a graph
object with Graph ().

Adding nodes and edges to the

object is straightforward.

Edges can be added by specifying

the two nodes connected.

158 J. ROGEL-SALAZAR

g.add_weighted_edges_from([(1, 'E’, 2),
('c’, 2, 3.5)])

Notice that the nodes can also be numbers, not just strings.
In the example above, we are creating an edge between

nodes 1 and E with a weight of 2, and an edge between

nodes C and 2 with a weight of 3.5.

We can take a look at the nodes:

> g.nodes()

NodeView(('A’, 'B’, 'C’, 'D', 'E’, 'F’, 1, 2))

and edges:

> g.edges(data=True)

EdgeDataView([('A’, 'B', {}),

(’c’I ’D” {})’
('c", 2, {'weight’: 3.5}),
("E", "F', D),

('E", 1, {'weight’: 2})])

of our graph g. We are requesting information about the

edges by passing the parameter data=True, otherwise (the

default) we will simply get a list of existing edges.

We can render the network with the draw_network method

as follows:

Weighted edges are defined with a
third value in the tuple.

We can look at the nodes in a
network with the nodes () method.

To see the metadata we can add
data=True to both the nodes or

edges methods.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 159

nx.draw_networkx(g,
node_color="black’,
font_color="white’,

node_size=800)

Here we are requesting that the nodes are coloured in black
and that the font is white with a size of 8oo pt. The result

can be seen in Figure 3.6. Remember that the position of the
nodes is not important, and indeed the rendering may look

different in your screen.

We know that it is possible to represent a graph with the
help of an adjacency matrix. For the undirected graph

shown in Figure 3.6 the adjacency matrix is symmetric and

We can plot the network with

draw_network.

The position of the nodes is not
important (until it is! ... for ease of

visualisation!)

Figure 3.6: A simple graph
depicting eight nodes and five
edges.

160 J. ROGEL-SALAZAR

it can be expressed as:

A B C DETF 1 2
A0 1 0 0 0 0 0 0]
B|(1 0 0 0 0 0 0 0
cCl0 0 0 1 0 0 0 35
D0 O 1 0 00 0 0 (3.16)
E|[0 O 0O 0 0 1 2 0
F(0O O O 0 1 00 O
1/0 0 0 0 200 0
20 035 0 00 0 0

Notice that the weighted edges we created above are shown
in the corresponding elements of the matrix. We can see the

adjacency matrix for our graph in NetworkX as follows:

adj_matrix = nx.adj_matrix(g)
> print(adj_matrix.todense())

We can see the adjacency matrix

[[0O. 1 with the adj_matrix method.

© N B O O ©o o o
© © O B O ©o o o
© O O N O ©o o o

w o O © B o o o

© O O ©O © B o o

© O O O © w o o
—

(o]
© © O O ©o o o ¥
(6]

11

We need to use the todense () method as the matrix is

stored as a sparse matrix. It is easy to see why this is the

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 161

case, particularly when we consider the number of zero
entries in matrix (3.16). An alternative representation for the

matrix is as an edge list:

> edge_list = nx.to_edgelist(g)
> print(edge_list)

[(’A" ’B”)' (’c’l ’D’I)I
('c", 2, 'weight’: 3.5), ('E’, "F",),
('E’, 1, 'weight’: 2)]

Finally, it is possible to define the graph as an adjacency list.
This is actually a dictionary object where the keys are nodes
in the graph and the values are themselves dictionaries. The
latter contain the nodes to which the key node is connected,
and the values can store the weight of the edge (if required).

The adjacency list for our graph is:

> for n in g.adjacency():

print(n)

("A", {'B": {}})

('B", {"A": {}})

('¢’, {'D': {}, 2: {’weight’: 3.5}})
('b", {'C': {}})

("E", {"F": {}, 1: {'weight’': 2}})
("F", {"E": {}})

(1, {'E’": {'weight’': 2}})

(2, {'C": {'weight’': 3.5}})

The edgelist methods shows us

the edge list of our network.

The adjacency list can be obtained
with the adjacency method.

162 J. ROGEL-SALAZAR

As it is the case in many applications, we usually require

to read and write our data in a more expedient manner.
NetworkX is no exception, and it is possible to read and
write graph data in a variety of commonly used formats
such as the ones described above, i.e., edge lists or adjacency
lists, as well as others such as GML, GraphML, pickle,
LEDA, JSON, etc.

3.4 Social Network Analysis in Action

IN THIS SECTION, WE WILL take a look at using the concepts
and techniques described earlier in the chapter and start us
to answer questions we may have about specific networks
at hand. First, we will take a look at a classic example of
social network analysis given by the Zachary karate club
network. We will look at some social dynamics shaping

the network. Second, we will analyse the interactions of

Jedis, Siths, Droids and Princesses with a Star Wars network.

Punch it!

3.4.1 Karate Kids: Conflict and Fission in a Network

THE ART OF EMPTY-HAND FIGHTING, karate, is a relatively
recent martial art originated on the island of Okinawa, but
influenced by ancient Chinese martial arts known as kung-
fu. Today, karate is a wide-spread sport, with karatekas all

over the world and plenty of dojos from which to choose.

Konishi Yasuhiro, an early karate sensei, is quoted to say

that “Karate aims to build character, improve human

NetworkX supports formats such
as GML, GraphML, pickle, LEDA,
JSON, etc.

We will analyse data for Zachary’s
karate club, and Star Wars!

Z5F is read as karate. Z& (kara)
means “empty” and F* (te) means
“hand”. Karaoke, meaning “empty
orchestra” shares the same first

word with karate!

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 163

behaviour, and cultivate modesty; it does not, however,
guarantee it.” And indeed this is something that can be
corroborated with some karate clubs out there. A case in
point is a now famous karate club studied over three years
by Wayne W. Zachary'> in the 1970s to analyse conflict and

fission in small groups.

The club was based at a university, and tensions between
the club president, John A., and a part-time instructor, Mr.
Hi, had been brewing for some time due to the setting of
fees. Over time, the club became divided over these issues
with the eventual separation of the club into two: One that
supported Mr. Hi’s teachings, and another one that followed
John A. and the club officers.

Zachary collected information about the original club and
the dataset obtained is now known as “Zachary’s karate
club” network. The groups that emerged from the fission of
the karate club were factions not necessarily recognised by
the club members. Instead, the friendship network among

members gave rise to them during a moment of conflict.

The dataset called karate.gml can be obtained at
https://doi.org/10.6084/m9.figsha re.7985174.v1'® and
we will use it in the rest of this section. It contains 34 nodes
representing individuals within the karate club. The edges
in the network are given by interactions between two
individuals outside the activities of the club such as actual

lessons or meetings.

Let us take a look at the data in the network. We can read

the GML directly with NetworkX as follows:

> Zachary, W. W. (1977). An
information flow model for
conflict and fission in small
groups. . Anthropol. Res. 33(4),

452473

The club was eventually split into

two factions.

16 Rogel-Salazar, J. (2019c,
Apr). Zachary’s karate club.
https://doi.org/10.6084/
mg.figshare.7985174.v1

GML - Graph Modelling
Language.

https://doi.org/10.6084/m9.figshare.7985174.v1
https://doi.org/10.6084/m9.figshare.7985174.v1
https://doi.org/10.6084/m9.figshare.7985174.v1

164 J. ROGEL-SALAZAR

import networkx as nx

fname = ’'karate.gml’

K = nx.read_gml(fname)

We can plot the network with the draw_networkx method.
In this case, we will colour the nodes black, with white
labels and a size of 800. By default, the method uses a force-
directed layout to position the nodes and in this case we

make this explicit:

nx.draw_networkx (K, node_color='black’,
font_color="white’,
node_size=800,
pos=nx.spring_layout(K))

limits = plt.axis(’'off")

plt.show()

We can see the connections among members in the network
depicted in Figure 3.7. Node number 1 is Mr. Hi (the
instructor) and node 34 is John A. (the administrator). Let

us see some basic statistics of the network:

> print(nx.info(K))

Name:

Type: Graph

Number of nodes: 34
Number of edges: 78

Average degree: 4.5882

Remember to refer to the correct
path for the file!

In a force-directed layout the
edges are roughly of equal length,
and crossings are reduced by
assigning forces to the edges
similar to spring-like forces based

on Hooke’s law.

General information about the

network is obtained with info.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 165

Figure 3.7: Zachary’s karate club:
34 individuals at the verge of a
club split. Edges correspond to
friendship relationships among
club members.

166 J. ROGEL-SALAZAR

We can see that the average degree of the network (4.5882)
falls within the small world networks discussed earlier on
in the chapter. We can request the degree of Mr. Hi and
John A. with the help of the degree method for the network
object:

> K.degree(['1’, '34'])

DegreeView('1l’: 16, '34': 17)

More information can be obtained with the info method:

> print(nx.info(K, ’1'))

Node 1 has the following properties:
Degree: 16
Neighbors: 2 3456 7 8 9 11 12 13 14 18 20 22 32

> print(nx.info(K, ’'34"))

Node 34 has the following properties:

Degree: 17

Neighbors: 9 10 14 15 16 19 20 21 23 24 27 28 29
30 31 32 33

Decisions in the club structure were made by consensus

during club meetings. This meant that having a majority in
a meeting would result in decisions being swayed in favour
of one faction over the other. If Mr. Hi called for a meeting,
it would be advantageous for him if his supporters received

the information, but not the opposers. This effectively

Degree information for individual

nodes from a list.

The info method can provide
further information about specify

nodes.

Information transmission in
Zachary’s karate club network was
important in the decision-making

process, and eventual split.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 167

means that the connections between individuals enable the
flow of communication among parties. Those individuals
that were undecided about giving support to one group
over the other one become key players. They are able to

pass on the information more readily than others.

According to the information provided by Zachary, once

the unity of the club was unsustainable, two groups formed

and the membership for each of them is listed in the paper.

Nodes 1 -9, 11 — 14, 17, 18, 20 and 22 became Mr. Hi’s We know what actors in the

network moved to each of the two

club and the rest remained with John A. Let us add this
groups after the split.

information as metadata to our network. First we create

a dictionary called club holding the membership for each

node:

mr_hi = [*range(l, 10), =*range(1ll, 15),
17, 18, 20, 22]

club = {} We can encode this metadata in
for m in range(1l, 35): our network with the help of a
dictionary.

if m in mr_hi:

club[str(m)]

‘‘Mr. Hi'"’
else:

club[str(m)] ‘‘John A."’

We can now add this dictionary as an attribute to the nodes

in the network:

nx.set_node_attributes(K, club, ’'club”’) And add the dictionary as an
attribute to our network.

Let us check the information we just added:

168 J. ROGEL-SALAZAR

> nodes = K.nodes(data=True)

> print(list(nodes)[:3])

"club’:
"club’: 'Mr.

(e,
(’3’I

'Mr. Hi’"),
Hi")]

(’2”

"club’:

"Mr.

Hi'),

We know that the degree centrality of a node tells us the

number of connections to that node. We saw above that Mr.

Hi and John A. have the largest degrees, but what about the

rest of the nodes? We can answer this question very easily:

kdeg = K.degree()

The result is a dictionary that we can query at will. For

instance, we can check the degree of node 9:

> kdeg['9']

Node 9 is an interesting one as mentioned by Zachary.

Individual 9 backed (weakly) John A. but ended up joining
Mr. Hi’s club after the split. The explanation provided was
that the person was only three weeks away from a black belt

test and staying with Mr. Hi ensured that the test could be

taken.

We can plot a network encoding the degree of nodes, their

size, and colouring them according to the final affiliation

of the new clubs. Let us start by defining the color map we

will use:

Remember that data=True
provides us with metadata of

both nodes and edges.

The degree of the nodes is
obtained with the degree method.

We can query the dictionary as

usual.

Node 9 in the karate network is an

interesting one. Read on!

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 169

import itertools

nodes = K.nodes(data=True)

clubs = set(nx.get_node_attributes(K,\
"club’).values())

mapping = dict(zip(sorted(clubs),\
itertools.count()))

colors = list(mapping[n[1]['club’]] for n\

in nodes)

The third line in the code above creates a set (unique values)
of the clubs in the node attributes. We use this to create a
mapping between the unique clubs and a count to serve as
an index. Finally, we use the mapping to create a list that

will be used to assign the colour index to each of the nodes.

Let us now create the plot:

nx.draw_networkx (K, node_color=colors,
node_size=[200+val for (node, val) in kdeg])

limits = plt.axis(’'off")

plt.show()

It is possible to customise the plot defining the colour map,
font colour, position, etc. The result can be seen in Figure
3.8. The size of the nodes corresponds to their degree, and
the colour indicates the affiliation to the groups formed after
the split, with the darker grey nodes being Mr. Hi’s group
and the light grey ones are John A.’s supporters.

The largest nodes seem to be nodes 1, 34 and 33. We can

corroborate this with the information that we calculated

In order to add colour or size
attributes to the nodes, we need to

create appropriate mappings.

Notice that we need to pass a
value for each of the node sizes. In
this case, the values are given by
the degree centrality of the node

in question.

170 J. ROGEL-SALAZAR

before. In order to make it easier to grab this information,
let us create a function that lists the top 1 nodes given a

centrality measure (as a dictionary):

29
32 A
28

def get_top_nodes(cdict, num=5):
top_nodes = {}
for i in range(num):
top_nodes = dict(
sorted(cdict.items(), key=lambda x: x[1],
reverse=True) [:num]
)

return top_nodes

As we can see from the result below, the nodes with the

largest degree in descending order are 34 with degree 17, 1

24

//26
25

Figure 3.8: Degree measure of
the Zachary karate club network.
The size of the nodes denotes the
degree and the color corresponds
to the groups formed after the
split of the club. The darker grey
nodes are Mr. Hi’s group and
the light grey ones are John A’s
supporters.

We will use this function in the
rest of this chapter. Remember it

well!

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 171

with degree 16, node 33 with 12, followed by nodes 3 with
10, and 2 with 9:

> get_top_nodes(dict(kdeg))

{'34’: 17, '1': 16, '33': 12, '3': 10, '2': 9}

The total number of connections is a good start, but what
about if we weight this measure by the maximum possible
degree in a simple graph n — 1, where n is the number of
nodes in the network. We can calculate this in NetworkX

with the degree_centrality function:

degree_centrality = nx.degree_centrality(K)
nx.set_node_attributes(K,\

degree_centrality, ’'dc’)

We can use this normalised measure to look at a histogram
of the degree centrality for the karate club. We can obtain
the frequencies by sorting the values of the measure and use

the Counter from the collections module:

deg_values = sorted(set(degree_centrality.\

values()))

from collections import Counter

value_counts = Counter(degree_centrality.values())

deg_hist = [value_counts[x] for x in deg_values]

Not surprising to see 34 and 1 in

the top nodes... right?

Calculate the degree centrality
with degree_centrality. Simple,
right?

Counting the number of nodes
with a particular degree centrality

is straightforward.

172 J. ROGEL-SALAZAR

104

Number of nodes

Degree centrality

In Figure 3.9 we can see the result of the calculations above.
There are only a few nodes with degree centralities higher
than 0.4. The bulk of the nodes in our network has lower
scores for this measure. Let us create a plot of the network

using the size as the degree centrality:

nx.draw_networkx (K, node_color=colors,
node_size=[3000 * v for v in

nx.get_node_attributes(K, ’dc’').values()])

We can see in Figure 3.10 how the degree centrality keeps

the information about the network. We perhaps have learnt
nothing new. However, the normalised version provides us
with an easier way to make comparisons between the nodes

than the degree directly.

0.00 0.05 0.10 0.15 020 025 030 0.35 0.40

0.45 0.50 0.55

Figure 3.9: Frequencies of the
degree centrality measure for the
karate club network.

We have left out the commands
to avoid showing the axis and the
plot itself.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 173

15
16

23
19

>2 1
\NN

28

Figure 3.10: Degree centrality
measure of Zachary’s karate club.

We know that the betweenness, tells us about the influence The size of the nodes denotes the

of particular nodes over the network. Let us calculate the degree centrality. We can see the
importance of not only nodes 1, 34,
betweenness for our karate club. This can be done with the 33, but also 2 and 3.

betweenness_centrality function as follows:

betweenness_centrality = \

. Calculate the betweenness with
nx.betweenness_centrality(K)
betweenness_centrality.

nx.set_node_attributes(K,

betweenness_centrality, 'bc’)

We mentioned before that betweenness can be seen as a
measure of nodes serving as a bridge between different
components of a graph. Let us have a look at these

“bridges” by getting the top 5 nodes by betweenness.

174 J. ROGEL-SALAZAR

Figure 3.11: Betweenness of
Zachary’s karate club network.

> get_top_nodes(betweenness_centrality) The size of the nodes denotes

the betweenness. We can see the
importance of nodes 1, 34, as well

i1 as 33 and 3. Node 32 is a bridge in
{’1": 0.43763528138528146, the network.

"34': 0.30407497594997596,
"33": 0.145247113997114,
Remember the function

'3": 0.14365680615680618, get_top_nodes we defined above?
"32': 0.13827561327561325}

Mr. Hi (1) and John A. (34) are indeed prominent in the
network. We can see the presence of nodes 33 and 3 as
before, but a new comer has appeared in the top 5: Node
32. We can see the relative importance of the betweenness

measure in Figure 3.11. The code for this plot is as follows:

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 175

nx.draw_networkx (K, node_color=colors,

node_size=[4000 x v for v in

nx.get_node_attributes(K, ’bc’').values()])

We know that the flow of information in the network was

an important way to ensure that the decision taken during

meetings favoured the faction with a majority. A way to
assess which nodes are able to spread information more
efficiently is given by the closeness. We can calculate the

closeness as follows:

closeness_centrality = nx.closeness_centrality(K)
nx.set_node_attributes(K,

closeness_centrality, 'cc’)

The “closest” nodes in the karate club network are as

follows:

> get_top_nodes(closeness_centrality)

{'1': 0.5689655172413793,
"3’: 0.559322033898305,
"34": 0.55,

'32': 0.5409836065573771,
'9’: 0.515625}

Things are getting interesting. We can still see Mr. Hi (1)
and John A. (34) as important nodes. Nothing surprising

there, or indeed by having node 3 in the top “closest” nodes.

We again have node 32 appearing, and now we finally see

The closeness_centrality lets
us calculate the closeness of the

nodes in the network.

We finally see node 9 appear as
an important, close, node in the

network!

176 J. ROGEL-SALAZAR

node 9 in there. It is through these nodes that information

about meetings would have flowed.

The closeness measure of the nodes is very similar and
showing this measure as the size of the nodes results in

a plot that does not showcase the importance of certain
nodes. Instead, we will show this measure as the colour
of the nodes. This requires us to draw the network’s parts

separately as follows:

pos = nx.spring_layout(K) We can use separate methods

ec = nx.draw_networkx_edges (K, pos=pos) to render the network in

the way we want. Using
nc = nx.draw_networkx_nodes (K, pos=pos,

draw_networkx_edges for the
node_color=[v for v in edges, draw_networkx_nodes
. for the nodes and

nx.get_node_attributes(K, 'cc').values()],
draw_networkx_labels for the

node_size=[1200 * v for v in labels. Notice that all have the
nx.get_node_attributes(K, ’'cc’).values()]) same position attribute.

1b = nx.draw_networkx_labels(K,pos =pos)

We are drawing separately the edges, nodes and labels all
with the same position layout. Note that we are encoding
the closeness measure both in the size of the node and in
its colour. Figure 3.12 shows the result of the commands
above. You can see that the size alone would not tell us
much about the closeness; however, the colour lets us obtain

the information desired.

We can now turn our attention to what nodes are best
connected within the network. We have seen that the
eigenvector centrality provides a view of the nodes that are
endorsed by influential actors. We can calculate the

eigenvector centrality as follows:

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 177

eigenvector_centrality = \
nx.eigenvector_centrality(K)
nx.set_node_attributes(K, eigenvector_centrality,

ec’)

The best connected nodes in our network are:

get_top_nodes(eigenvector_centrality)

{’34": 0.373371213013235,
'1’: 0.3554834941851943,
"37: 0.31718938996844476,
"33": 0.3086510477336959,
'2’: 0.2659538704545025}

0.55

0.50

0.45

0.40

0.35

0.30

Figure 3.12: Closeness of
Zachary’s karate club network.
The size of the nodes denotes

the closeness. We can see the
importance of the nodes we
already know about: 1, 34, 33 and
3. Node 9 is a close node in the
network too.

Get the eigenvector centrality with
eigenvector_centrality. Getting
the gist of it, right?

178 J. ROGEL-SALAZAR

We see John A. be an influencer, with a higher eigenvector
centrality than Mr. Hi. Once again, node 2 makes an
appearance, together with nodes 3 and 33. The eigenvector

centrality network can be seen in Figure 3.13.

nx.draw_networkx (K, node_color=colors,
node_size=[2400 x v for v in

nx.get_node_attributes(K, 'ec’).values()])

w// m

V&

Figure 3.13: Eigenvector centrality
of Zachary’s karate club network.
The size of the nodes denotes

. . the eigenvector centrality of the
Once we have taken a look at the eigenvector centrality, the network.

next logical step is to calculate the PageRank. As you can
imagine, there is a handy function in NetworkX to let us do

this: pagerank.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 179

pagerank_centrality = nx.pagerank(K,\

nx.set_node_attributes (K,\ The PageRank can be calculated
with pagerank.

pagerank_centrality, 'pr’)

The top five nodes per PageRank are as follows:

> get_top_nodes(pagerank_centrality)

'347: ©.10345460652842152 The ranking of the nodes with

{ o ! PageRank returns the usual karate
'1': 0.09923208031303203, kids.
'33’: 0.07330616298815512,
"3’: 0.05919704684187155,
'2': 0.0543403155825792}

We can see the usual karate kids: In this case though, nodes
33 and 3 have swapped places in the ranking. We can get a

plot of the network as we have done in the previous cases:

nx.draw_networkx (K, node_color=colors,
node_size=[5000 * v for v in
nx.get_node_attributes(K, 'pr’).values()],

pos=pos)

We can see the result in Figure 3.14, where, as usual, we
have encoded the PageRank centrality score in the size of

the node. We can see the prestige of nodes 34, 1, 33, 3 and 2.

We can start thinking of the factions that were created We can consider what happens to
during the conflict and look at those nodes that are central thedgraph when we remove certain
nodes.

to the network. We will keep Mr. Hi and John A. in the
network for obvious reasons. However, we can consider

what happens when we remove some of the nodes whose

180 J. ROGEL-SALAZAR

centrality measures indicate importance, i.e., nodes 2, 3, 9

and 32 for example.

k = K.copy()

k.remove_nodes_from(['2', '3', '32', '9'])

The result of this removal can be seen in Figure 3.15. It is
clear that a number of connections have disappeared in this
reduced network and these individuals can be thought of as
being important for the cohesion of the network.

The clustering coefficient for the nodes in the karate
network can be obtained with the clustering function.
Notice that the result is a dictionary where the keys are the
individual nodes and the values are the clustering

coefficients:

Figure 3.14: PageRank of
Zachary’s karate club network.
The size of the nodes denotes the

PageRank scores of the network.

We can remove nodes with
remove_nodes_from and provide
a list with the nodes we want

expunged.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 181

15
16
10
23
31
N
33 21

AN =

24

28—

26

25/

Figure 3.15: Reduced network for

- Zachary’s karate club. We have
> ccoeff = nx.clustering(K) removed nodes 2, 3, 9 and 32 that

> print(ccoeff[’1']) are important for the cohesion of

denotes the degree centrality of

the nodes.
0.15
The average clustering coefficient is given by the
average_clustering function:
> avg_ccoeff = nx.average_clustering(K) Calculate the clustering

> print(avg_ccoeff) coefficient of the network with

average_clustering.

0.5706384782076823

Now that we started looking at removing nodes and at the

clustering of the network, we can consider calculating the

the network. The size of the nodes

182 J. ROGEL-SALAZAR

k-components of the karate club. The k_components function =~ Remember that a k-component is

enables us to do this in NetworkX. a maximal subgraph with, at least,
connectivity k.

components = nx.k_components (K)

4-component subgraph 3-component subgraph

-%1@0

3-component subgraph 2-component subgraph
15 16
) 4/ 5
9
1

7

2-component subgraph 1-component subgraph
15
16

s

3391

Z(7

1

(=}

N

N/
T

Figure 3.16: k-components of
The result is a dictionary with connectivity level k as key Zachary’s karate club network.

and a list of sets of nodes that form a k-component of level k.
For instance, the network has one single 4 level component

and is given by:

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 183

> print(components[4])

[{111' 1141’ 121' 131’
I31’, !331' 1341’ 141’ ’8’, 195}]

We can see the different k-components of Zachary’s karate

club network in Figure 3.16.

It is also possible to answer the question regarding the fully
connected components in the network, in other words the
cliques. As you can imagine, NetworkX provides a way to

find the cliques: find_cliques.

Clique number 0 Clique number 1

Clique number 2 Clique number 3

Figure 3.17: Some of the cliques in
Zachary’s karate club network.

cl = nx.find_cliques(K)

The result is an iterator over maximal cliques, providing a
list of nodes in the network. You can verify that there are 36

cliques and we show 4 of these in Figure 3.17.

184 J. ROGEL-SALAZAR

There are several ways to detect communities in the
network. One simple way is to look at hierarchical
clustering which we discussed in Chapter 7 of Data Science
and Analytics with Python'7 where we learnt how to
construct dendrograms. Let us use the shortest path lengths

between the nodes in our network:

path_length = nx.all_pairs_shortest_path_length(K)

We will now use this information to get a distance measure

between the nodes and build a dendrogram:

n = len(K.nodes())

distances = np.zeros((n, n))

from scipy.cluster import hierarchy

from scipy.spatial import distance

for u, p in path_length:
for v, d in p.items():
distances[int(u) - 1][int(v) - 1] =d
sd = distance.squareform(distances)

h = hierarchy.average(sd)

The resulting dendrogram can be seen in Figure 3.18 where
we can see a hierarchy of 2 and then 4 clusters, or

communities.

We discussed in this chapter how the Girvan-Newman
algorithm discovers communities in a network. NetworkX
provides us with a function to do just this: girvan_newman()

in community.

7 Rogel-Salazar, J. (2017). Data
Science and Analytics with Python.
Chapman & Hall/CRC Data
Mining and Knowledge Discovery
Series. CRC Press

We are using scipy to calculate
hierarchical clustering in our

network.

The girvan_newman()
function in community from
networkx.algorithms does what it

says on the tin.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 185

Dendrogram for Zachary's Karate Network

3.04

g
n
)

N
o
.

i -

Distance
=
un

=
o
:

0.54

0.0
DN O DIARDDE Y XN UMD D0 AN DAY D 0D AP ND RS AR

Nodes
Figure 3.18: Hierarchical

clustering over Zachary’s karate
club network.

from networkx.algorithms import community

comp = community.girvan_newman (K)

communities = tuple(sorted(c) for c in next(comp))
The function returns an iterator

over tuples, and each tuple is a

The algorithm has found 2 communities in the network: sequence of communities.

> len(communities)

Let us add this information to the metadata of our network.

First let us create two subgraphs, one for each community:

186 J. ROGEL-SALAZAR

K
[y
Il

K.subgraph(communities[0])

Q
N
1l

K.subgraph(communities([1])

A
\/\&n

Figure 3.19: Communities
discovered by the Girvan-Newman

We can now use the nodes in each community to add a new , \
algorithm on Zachary’s karate

attribute to our network: club network. Notice that nodes 3
and 9 have been assigned to John
A’s faction.
comm = {}

for ¢ in c_1:

comm[str(c)] "community 1’

This calculation could be reduced

. to a single for loop. See next
for ¢ in c_2: . .
section for this.

comm[str(c)] "community 2’

nx.set_node_attributes(K, comm, 'comm’)

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 187

In Figure 3.19 we can see the plot of the network with the
nodes coloured by the community to which they were
assigned by the algorithm. We can see that the network
looks roughly the same as that in Figure 3.8. However, if
you closely inspect the nodes you will see that nodes 3 and
9 have been assigned to John A.’s faction and not to Mr. Hi.
We knew about node 9 and his black belt test, perhaps node

3 had similar reasons to join one group over the other.

Finally, let us see what the Louvain algorithm has to say
about the communities in Zachary’s karate network. At
the time of writing, the Louvain algorithm is not part of
NetworkX. Instead, you can install the package with pip in

your command line as follows:

> pip install python-louvain

Information about the implementation can be obtained

in the following GitHub repository: https://github.com/
taynaud/python-louvain/. You will notice that the module
is actually called community and we aim to find the best

partition:

import community

louvain = community.best_partition(K)

The result is a dictionary where the keys are the nodes and
the values correspond to the community to which the nodes
have been assigned. We can take a look at the communities

discovered in Figure 3.20.

Girvan-Newman has found that
two nodes would naturally switch
sides. This confirms explanations

provided by Zachary.

Currently the Louvain algorithm

needs to be installed separately.

best_partition calculates the
partition that maximises the
modularity using the Louvain
algorithm.

https://github.com/taynaud/python-louvain/
https://github.com/taynaud/python-louvain/

188 J. ROGEL-SALAZAR

We can take a look at what nodes have been assigned to
each of the four communities that the algorithm has
discovered. Let us navigate the dictionary and filter the

nodes per community:

for i in set(louvain.values()):

print(’Community '.format(i))

members = [n for n in louvain.keys()\
if louvain[n] == 1i]

print(members)

For completeness, let us show the result of the code above.

We can see how each community contains non-overlapping

nodes:

Figure 3.20: Communities
discovered by the Louvain
algorithm on Zachary’s karate
club network. We have four
communities denoted by different
shades of grey.

The result is returned as a
dictionary.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 189

Community 0

[, '2", '3’, '4', 's’, '1e’, '12’', '13’, '14’,
'18', '20", '22']

Community 1

['s, 'e’, '7', '11’", '17']

Community 2

['e', 'is’, '16', '19', '21', '23', '27', '30’',
‘31", '33", '34’']

Community 3

[1241’ 1251’ '26', '28’, 1291, 1321]

Let us finish this section by mentioning that the karate
club network we have been playing with is also part of

NetworkX and you can load it as follows:

G = nx.karate_club_graph()

Please note that in this graph the nodes have been labelled

in a Pythonic style starting from 0: Hi is node 0 and John A.

is node 33.

3.4.2 In a Galaxy Far, Far Away: Central Characters in a
Network

FROM ANCIENT JAPAN TO GALAXIES far, far away..., it is
widely known that George Lucas is a fan of Akira
Kurosawa’s work and the influence of films such as The
Hidden Fortress from 1958 is patent in the story of Star Wars,

from the spiritual elements of the Force to the use of swords

In this case, we have four
communities. Notice that we
start counting in a Pythonic style

— from 0.

You will be glad to know that
Zachary’s karate club network is
included in NetworkX.

From ancient Japan to galaxies far,

far away.

190 J. ROGEL-SALAZAR

in battle and the armour of Lord Vader himself. Much has
been written about these influences, and in this case we are
interested in finding out more about the interactions among

our favourite characters in this space opera.

The first step in the process is to get hold of the data that we
will use to analyse our characters. In this case, we will be
using data from the work that Evelina Gabasova'® has done
in a series of blog posts. The nodes in the network represent
our beloved characters. The connections between them
represent interactions between the characters in the form of
dialogue in the films scenes. The data can be obtained
directly from Gabasova’s reference above. For completeness,
a GML format file with the network can be obtained at
https://doi.org/10.6084/ m9.figshare.7993292.v1"9
with the same information as the original JSON files

provided by Gabasova.

The network contains information for Episodes I through to
VII and it is an undirected graph. The edges in the network
are weighted by the amount of dialogue between the
characters. As you may imagine, there are some
assumptions that Gabasova has made to keep the network
manageable. For example, separate nodes are kept for
Anakin Skywalker and Darth Vader. But those for the
Emperor and Senator Palpatine, or Queen Amidala and
Padmé have been merged. Similarly, nonspeaking characters
such as R2-D2 and Chewbacca were added via mentions in
the screenplay. For further information on these aspects,

please refer to the excellent post from Evelina Gabasova.

8 Gabasova, E. (2016).
Star Wars social network.
https:/ /doi.org/10.5281/
zenodo.1411479

9 Rogel-Salazar, J. (2019a,
Apr). Star Wars Network.
https://doi.org/10.6084/
mo.figshare.7993292.v1

aka Darth Sidious too!

https://doi.org/10.6084/m9.figshare.7993292.v1
https://doi.org/10.5281/zenodo.1411479
https://doi.org/10.6084/m9.figshare.7993292.v1
https://doi.org/10.6084/m9.figshare.7993292.v1
https://doi.org/10.5281/zenodo.1411479

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 191

As usual, let us load some useful libraries, including

NetworkX, matplotlib, Pandas and numpy:

import networkx as nx
import numpy as np

import matplotlib.pyplot as plt

The network can be loaded as follows:

fname = ’'starwars_network.gml’

S = nx.read_gml(fname)

As we did for the karate network, let us print some

information about the Star Wars network:

> print(nx.info(S))

Type: Graph

Number of nodes: 112
Number of edges: 450
Average degree: 8.0357

We have 112 characters with 450 edges and the average
degree for this Universe is 8.0357, a bit higher than the

six-degrees of separation! Let us take a look at the network.

Before we do that, given the number of characters, it would
be good to pick out some of the nodes that we may be
interested in tracking. We will define a list of main

characters as follows:

These libraries will be with you.
Always...

Our dataset contains 112
characters with 450 edges and the
average degree for this Universe is
8.0357.

192 J. ROGEL-SALAZAR

main_characters = [’Darth Vader’,
"Emperor (Palpatine)’, 'Luke’, ’'Leia’,
'Yoda', 'Anakin’, 'R2-D2', 'Han’,
'Chewbacca’, ’'Padme (Queen Amidala)’,
"Poe’, 'BB-8’, ’'Jabba’, ’'Count Dooku’,
"Jar Jar’, 'Rey’, 'Darth Maul’,
'Admiral Ackbar’, ’'Snoke’, ’'Qui-Gon’,

"Kylo Ren’, 'Obi-Wan’, 'C-3P0’',

"Darth Maul’, 'Niv Lek’, ’Boba Fett’]

We will use this list to create a dictionary so that we can
label these characters in the plots we will create as we go

along this analysis:

labels = {}
for character in main_characters:

labels[character] = character

In the original network, each node is assigned a value that
represents the number of scenes where the character speaks,
similarly a colour is also assigned. Although the plots in
this book are in black and white, you can see the results in
full colour in your machine. Let us extract these attributes

from the network so that we can use them in our plots:

node_sizes = [3 *x float(v) for v in

nx.get_node_attributes(S, ’value').values()]

colors = [c for c in

nx.get_node_attributes(S, ’colour’).values()]

Oh, my dear friends. How I've

missed you!

Plotting labels in our network is

managed with a dictionary.

We extract node attributes such as
size and colour from the network

to create our plot.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 193

We mentioned above that the edges are weighted and we
can use the values to represent the thickness of the

connections in the network:

edges = S.edges()

edge_width = [S[u][v]['value’] for u, v in edges]

We know that both Jedis and Siths are able to use the Force
and very appropriately we can use a force-directed layout to

plot our network.

pos_force=nx.spring_layout(S)

We are now ready to use the Force too:

nx.draw_networkx_nodes (
S, node_color=colors,
with_labels=False, node_size=node_sizes,

alpha=0.9, pos=pos_force)

nx.draw_networkx_edges(S, alpha=0.15,

color='gray’, width=edge_width, pos=pos_force)

nx.draw_networkx_labels(S, labels=labels,
font_size=10, font_color='#000099’,

font_weight="bold’, pos=pos_force)

I could not help myself playing with the network and
decided to show an initial rendering inspired by the famous
Death Star space station. We can see the network in Figure

3.21.

We read the value for each existing

connection in the network.

May the (spring) Force be with
you!

But our training is not yet

complete!

We are plotting the nodes, edges
and labels separately, but in the

same figure and the same layout.

194 J. ROGEL-SALAZAR

Figure 3.21: Star Wars network
covering Episodes I-VII. Layout
inspired by the famous Death Star.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 195

Degree centrality is the first measure we will look at when

analysing our network.

degree_centrality = nx.degree_centrality(S)

nx.set_node_attributes(S, degree_centrality, ’'dc’)

The distribution of the degree centrality is shown in Figure
3.22 where we can see only a handful of characters with
degree centralities higher than 0.20 and a large number of

nodes with very small scores in this centrality measure.

Remember that the degree
centrality tells us how well
connected a node is to the rest of
the network.

20.01

17.5+

15.0

12.54

10.0+

7.54

5.0

2.5

Number of Star Wars Characters

Before we continue, in order to make our life a bit easier, let

us define a function to plot networks in a more

straightforward fashion. We will pass a network object, an

000 005 010 015 020 0.5
Degree Centrality

030 035

Figure 3.22: Distribution of the
degree centrality for the Star Wars
network.

196 J. ROGEL-SALAZAR

attribute that will be encoded as the node sizes, a threshold
to filter the network, a factor to modify the size of the nodes,
the position where the nodes will be plotted and the width
of the edges in the network. We will also accept a named
parameter to show the labels of the chosen nodes. The

function is as follows:

def plot_graph(G, att, att_threshold, size_factor,

position, edge_width, *xkwargs):

labels = kwargs.get(’'labels’, None)

nodes = [x for x, y in G.nodes(data=True)
if y[att] >= att_threshold]
sg = G.subgraph(nodes)

gcolors = [c for c in

nx.get_node_attributes(sg, 'colour’).values()]

nx.draw_networkx_nodes(sg, node_color=gcolors,
node_size=[size_factor x v for v in
nx.get_node_attributes(sg, att).values()],

pos=position, alpha=0.5)

nx.draw_networkx_edges(sg, alpha=0.2,
color='gray’, pos=position,

width=edge_width)

nx.draw_networkx_labels(sg, labels=labels,

pos=position)

First we check if a set of labels is

provided.

We then select the nodes that meet
the threshold provided and obtain
a subgraph.

We use the colour attribute to

render our nodes.

We then draw the nodes with the
appropriate size.

Then the edges.

And finally, the labels.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 197

Using the same function that we defined in the previous
section to obtain the top nodes for a centrality measure, we

can see the top 5 characters by degree.

Gold @eader
wEld
RiQIie ' wédge
Bosgasé _' S?’ba B‘esd.ader

T.'4 La pl_:aha
. &

%ﬂ“ Bal@Tik
e, ; Kyl ellllﬁema.l Hux
" /' ‘"* ~——-——J"apta|.ha5n1a
Rd;_"“ T e 5 o N\ Fa‘l'l’l
Senatn‘sk Aak Yoda ron 0".'““’”] Admir't_atura
Ki-AdiMundi Bok@Fett . , e ..__If:—%
Jés

Figure 3.23: Degree measure of
the Star Wars network. The size
of the nodes denotes the degree
centrality of the node.

> get_top_nodes(degree_centrality)

{’Anakin’: 0.3783783783783784,
. Anakin and Obi-Wan are the
Obi-Wan’': 0.3333333333333333, characters with the highest

"C-3P0’': 0.32432432432432434, number of connections.

"Padme (Queen Amidala)’: 0.3063063063063063,

"Qui-Gon': 0.24324324324324323}

It i s not surprising to see there Anakin and Obi-Wan, but
Qui-Gon?? We can see the filtered network for degree

centrality in Figure 3.23 and the code is as follows:

198 J. ROGEL-SALAZAR

plot_graph(S, ’'dc’, 0.04, 5000, pos_force,
edge_width)

The bridges in the network can be obtained with the help of

the closeness centrality, let us take a look:

closeness_centrality = nx.closeness_centrality(S)
nx.set_node_attributes(S, closeness_centrality,
lccr)

nodes_cc = get_top_nodes(closeness_centrality)

The bridge characters are:

> print(nodes_cc)

{'C-3P0’: 0.5619021082938609,
"Obi-Wan’': 0.559020559020559,
"Anakin’: 0.5505505505505506,
"Luke’: 0.526613570091831,
'R2-D2’: 0.5166303744502797}

It is great to see both C-3PO and R2-D2 appear in the top 5
characters by closeness, together with Luke and Obi-Wan.

Let us see the eigenvector centrality:

eigenvector_centrality=nx.eigenvector_centrality(S)
nx.set_node_attributes(S, eigenvector_centrality,

’

ec’)

nodes_ec = get_top_nodes(eigenvector_centrality)

You see, it only took a line with

our new function!

Closeness centrality shows us the

bridge nodes in the network.

In this case, we have C-3PO and
Obi-Wan as those bridges.

These were indeed the droids we

were looking for!

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 199

The top 5 characters by eigenvector centrality are:

> print(nodes_ec)

{’Anakin’: 0.29656614921513724,

"Obi-Wan’: 0.2810463592564618,
We have Anakin, Obi-Wan and

"C-3P0": 0.2753430975993982, C-3PO in the first three places.

"Padme (Queen Amidala)’: 0.2580025161393472,
"Qui-Gon’: 0.22896839403488994}

Let us turn out attention to the PageRank for our network:

pagerank_centrality = nx.pagerank(S, alpha=0.9)
nx.set_node_attributes(S, pagerank_centrality,’'pr’)

nodes_pr = get_top_nodes(pagerank_centrality)

If we look at the top 5 characters by PageRange we have
roughly the same order, but instead of having Qui-Gon in

5th place, we have Luke:

> print(nodes_pr)

The order for PageRank is similar,

{'Anakin’: 0.042419290139533466,
but we finally get to see Luke!
"Obi-Wan’: 0.03851822264942938,

"C-3P0’: 0.035812500857126256,

'Padme (Queen Amidala)’: 0.03369795977341906,

"Luke’: 0.029121630268795225}

The network resulting from encoding the eigenvector
centrality in the size of the nodes and filtering for nodes

with values higher than 0.06 can be seen in Figure 3.24.

200 J. ROGEL-SALAZAR

plot_graph(S, 'ec’, 0.06, 5000,

pos_force, edge_width)

RigDlie
B Ds'_as s 8 e. b

C%_P.Fﬂ.ﬂ._";-'fa s e

Jar

Nute.&iﬁysm..“bl_é. - n, “v.o .

Cou u 3 T / e eia
: S Mon hma_~ y
Senatc‘skAak Yoda - ‘ #

Ki-m.undi BoliiiFett @

Figure 3.24: Eigenvector centrality
for the Star Wars network. The
size of the nodes denotes the
eigenvector centrality of the node.

Wédlge

Bifios
CaptaifjPanaka

Kigker
n

o Rey

"-W‘ o KyiRen

Figure 3.25: PageRange for the
nodes in the Star Wars network.
The size of the nodes denotes the
PageRank score for the node.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 201

The network encoding the PageRank scores for nodes with

values higher than 0.006 is show in Figure 3.25.

plot_graph(S, ’'pr’, 0.006, 25000,

pos_force, edge_width)

It is an inescapable fact of the Star Wars story that Anakin
Skywalker gets seduced by the Dark Side of the Force and

we can think of the two characters as being one and the Remember, fear is the path to the
same person. Let us consider the network where the nodes Dark Side.
for these two central characters gets merged. The merging
can be done with NetworkX with the contracted_nodes
function:
V = nx.contracted_nodes(S, 'Darth Vader’, ’'Anakin’)
Degree Centrality (Vader) Eigenvector Centrality {Vader)

Figure 3.26: Vader networks

for the following centrality
measures: Degree centrality,
eigenvector centrality, PageRank
and betweenness.

202 J. ROGEL-SALAZAR

Similar calculations to the ones carried out above can be

done on this new network. The results for degree centrality,

eigenvector centrality, PageRank and betweenness can be

seen in Table 3.1. As we can see the rankings are very stable,

keeping the first three places for Darth Vader, Obi-Wan

and C-3PO, we then have Padmé, Luke, Qui-Gon and Han, C-3PO!! Not R2!! Really??
followed by Leia, Chewbacca, the Emperor, R2-D2, Poe, and

even Jar Jar.... Plots of the resulting (filtered) networks can Jar Jar... Oh well!!!

be seen in Figure 3.26.

Table 3.1: Character rankings for
Degree Eigenvector the most central characters in the

. . PageRank Betweenness i i
Centrahty Centrahty g Star qus saga given by various
centrahty measures.
Vader Vader Vader Vader

(0.4909) (0-3559) (0.0561) (0.2843)
Obi-Wan Obi-Wan Obi-Wan Obi-Wan

Ranking

2 (0.3273) (0.2689) (0.0381) (0.1627)

3 C-3PO C-3PO C-3PO C-3PO
(0.3182) (0.2637) (0.0352) (0.1391)
Padmé Padmé Padmé Luke

+ (0.3091) (0.2529) (0.0344) (0.1309)
Qui-Gon Qui-Gon Luke Han

3 (0.2455) (0.2243) (0.0284) (0.104)

6 Luke R2-D2 Qui-Gon Poe (0.073)
(0.2364) (0.2166) (0.0273)
Han Emperor Han Chewbacca

7 (0.2364) (0.1966) (0.0268) (0.0681)

3 Leia Jar Jar Leia Emperor
(0.2273) (0.183) (0.026) (0.0641)
Jar Jar Luke Jar Jar Padmé

9 (0.2182) (0.1809) (0.0251) (0.0621)

o R2-D2 Han Emperor Leia

(0.2) (0.1765) (0.0226) (0.0586)

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 203

We can definitely see who the central characters in this
galaxy are and how they interact. The story of the Light
versus the Dark Side of the Force is right there with Darth
Vader and Obi-Wan in the first places. The presence of the
droids in the first 10 places plays homage to the influence
that the feudal peasants from Kurosawa’s film The Hidden

Fortress.

The data we have used contains information from Episodes
I through VII, and having characters from the prequel (I-III)
in the form of Qui-Gon, Padmé and even Jar Jar tells us
that part of the story. It is interesting to see Poe as the only
character from Episode VII that made the cut in the first 10
places and only for the betweenness centrality. This tells us
about his importance in bringing together other characters
in the story. This makes sense as he meets Finn first while
escaping from the First Order, even giving him a name (FN-
2187 is not deemed good enough) and introduces him to
the rest of the resistance. Interesting to see that although
the Emperor is an important character in the story, his
presence is not outwardly revealed. This makes sense when
we consider the plottings and cover-ups he had to concoct to

get his plans to fruition.

We finish this section by looking at the communities that
arise from the connections in the network. Will we be able
to distinguish the Dark Side from the Light one? Can we
tell which are the shady characters? Let us take a look. We
start by reducing the number of nodes in the network by
concentrating on those that have degree centralities higher

than 0.05:

This is definitely not a trap!

Rey is not in the first 10 places.
But then again, we only have data
up to episode VL

Light versus Dark Side? Not quite,

as we shall see.

204 J. ROGEL-SALAZAR

nodes = [x for x, y in V.nodes(data=True)
if y['dc’] >= 0.05]
VDC = V.subgraph(nodes)

We filter the graph for nodes with
degree centrality higher than 0.05.

We can apply the Girvan-Newman algorithm as follows:

gn_side = community.girvan_newman(VDC)
sw_sides = tuple(sorted(c) for c

in next(gn_side))

In this case, we have found two communities. We will now

add this metadata to the network itself:

RQie Wedge
/

- Red Leader
Biggs
Luke |
ﬁand Rey
Kylo Ren
Captain Phasma

R \NWZZF " Finn

A\ Mon Mothma™ Admiral Statura
. Boba Fett | \ A

{ Poe
N
Snap

Figure 3.27: Star Wars sides
(communities) obtained with the
application of the Girvan-Newman
algorithms.

comm = {}
for i, side in enumerate(sw_sides):
for character in side:
comm[str(character)] = ’'side {0}’.format(i)

nx.set_node_attributes(VDC, comm, ’'side’)

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 205

If we colour the nodes in the network by the side that was

found by the algorithm, we end up with the network shown

in Figure 3.27. As we can see, it is perhaps telling us more

about the episodes in the story, with the characters from The communities tell us about the

different chapters in the story, not

Episodes I-III on one side, and the ones from IV-VI and VII
about the two sides of the Force.

on the other one. This makes sense when we consider the

meaning of the edges in the network: They are dialogue

interactions among characters; we know that Rey interacts

with Han and Luke, but Poe never talked to Yoda or Padmé.

3.5 Summary

IN THIS CHAPTER WE HAVE covered many of the
fundamental concepts used in the analysis of networks,
whether social or otherwise. We have seen the wide variety
of applications that networks have and the discussion was
framed in terms of social network analysis, although I trust

you can see the relevance in other areas of interest.

The work of the brilliant Leonhard Euler opened up a new
way of understanding relationships between actors in a
network. These actors are referred to as nodes or vertices,
and the ties are known as edges. We understand the
difference between directed and undirected graphs as well
as some of the characteristics that make these networks
interesting. Graph theory provides the basis to understand

the relationships encoded in networks of interest.

We discussed the ideas behind a small-world network,

leading to the popular idea of the six degrees of separation

206 J. ROGEL-SALAZAR

proposed by Milgram in the 1960s. Similarly, we talked
about related measures such as the Bacon and Erdos
numbers as ways to gauge the distance between actors,

literally in the case of the Bacon number, in a network.

Encoding the information of a network in the form of a
graph enables us to represent it using matrices and we
described how an adjacency matrix can be used for this
purpose. We covered other formats to encode this
information in terms of edge and adjacency lists. In this way
we introduced concepts around graphs such as trails, paths,
cycles and semi-walks. We also described the use of
NetworkX as a tool to analyse graph/network data with
Python.

Furthermore, we described different measures that provide
information about the importance of agents in the network.
Measures such as degree centrality, closeness, betweenness,
eigenvector centrality and PageRank let us describe the
relationships in the graph and establish patterns that
otherwise would not be easy to spot. We talked about
cliques and clustering coefficients leading to the discussion
of community detection with Girvan-Newman'’s and

Louvain algorithms.

We finished the chapter with the application of these ideas
to a couple of networks. The first one is the data provided
by Wayne W. Zachary about a karate club with an infighting
issue leading to the split of the club. The second one covers
the interactions of the characters in the Star Wars films. So,

do as Yoda says and pass on what you have learnt.

4

Thinking Deeply: Neural Networks and Deep

Learning

AN ARTIFICIAL NEURAL NETWORK (ANN) is effectively a
computing system that takes into account inputs that are
combined, typically in a nonlinear manner, to calculate
outputs that can be compared to expected outcomes. The
motivation behind ANNSs is loosely inspired by the

biological neural networks that constitute animal brains.

The fact that expected outcomes are available to us should
immediately make our Jackalope data scientist brains
consider using neural nets for supervised learning. In that
sense, neural nets are said to be able to learn how to carry
out tasks based on the label data provided (data samples),
without the need of being specifically programmed with

rules.

Before we get into the deep end, understanding how neural

networks work, we will first cover some historical aspects of

For simplicity, we will also refer to

them as neural nets.

Learning without having to be

programmed!

208 J. ROGEL-SALAZAR

their development. Then we will explain the general
architecture of a neural network in terms of layers and
nodes, cover forward and backward propagation and finish
the chapter with a discussion on convolutional and

recurrent neural networks.

4.1 A Trip Down Memory Lane

GIVEN ALL THE REPORTED ACHIEVEMENTS accomplished
with the use of neural networks, we may think that the field
is quite new. However, a lot of the ideas behind modern
neural network implementations can be traced back to

the 1940s. A good starting point is the work of McCulloch
and Pitts” taking an electrical engineering approach to
describing the use of logical units to model an artificial
neuron. This can be seen as the basis of what we now call
artificial neural networks. The inspiration was indeed the
mimicking of the functions of a brain through electrical
circuits, culminating with the coinage of the term artificial

intelligence by John McCarthy.

The neuron doctrine as proposed around 1888 by Spanish
Nobel Prize winner Santiago Ramoén y Cajal is the basis of
modern neuroscience. It states that neurons are individual
separate cells and they behave as biochemically distinct cells
rather than a single entity in an interlinked network. A
crude approximation to model some of the functions of the
human brain is the electrical connectivity that takes place
between the 10 billion plus neurons that compose it. The

neuronal cell body, or soma, receives electrochemical signals

Some ideas may be even older,
but we need to draw the line

somewhere.

*McCulloch, W. S. and Pitts,
W. (1943). A logical calculus
of the ideas immanent in
nervous activity. Bull. of Math.
Biophysics 5(4), 115-133

The inspiration is indeed the
electrochemical activity of

biological neurons.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 209

(input) via the neuron’s dendrites. If the combined signal
received meets a given threshold, the neuron transmits a
new signal (output) along its axon to other neurons’
dendrites. This is the process the artificial neurons from

McCulloch and Pitts emulated.

Continuing with the inspiration of a brain as a model, Frank
Rosenblatt developed the concept of the perceptron® in which
a neuron receives information from other neurons in the
form of electrical impulses of varied strengths (positive or
negative). The receiving neuron combines these impulses
and if the result is larger than a certain given threshold the
neuron “fires”, transmitting the resulting impulse to other
neurons. As we shall see in the rest of this chapter, today
we refer to this as a one-layer neural network. Interestingly,
the perceptron was conceived to be a custom-made machine,
rather than an algorithm. If you find yourself in Washington
D.C., you can pay a visit to the Mark I Perceptron in the

Smithsonian Institution.

The perceptron combines the receiving inputs as a weighted
sum and the firing happens if the sum exceeds the threshold
C. With inputs x; and x; and weights w; and w, the output

of the perceptron can be written as follows:

1, if wix1 + wrxp > C,
Poutput = . (4.1)
0, if wyx1 + woxy < C.

We are effectively separating two regions in a plane with
a line and thus the perceptron is able to separate regions

linearly.

2 Rosenblatt, F. (1962). Principles of
neurodynamics: perceptrons and the
theory of brain mechanisms. Report
(Cornell Aeronautical Laboratory).
Spartan Books

You can visit a perceptron in
Washington D.C.

The perceptron is able to separate

regions linearly.

210 J. ROGEL-SALAZAR

During the 1960s other advances helped bring these early

neurons to be applied in the real world. For example,

Bernard Widrow and Marcian Hoff devised the first We will expand on feedforward
learning rules for feedforward networks with multiple nets in Section 4.23.
adaptive elements, naming their models “ADALINE” and

“MADALINE”. The rules relied on the examination of the ADAptive LINear Elements
and Multiple ADAptive LINear

Elements, respectively.

values prior to adjusting the weights. The weight
adjustment is proportional to the previous value times the
error divided by the number of inputs. The idea is that even
if one perceptron has a large error, it is possible to adjust the

weights so as to distribute the error to adjacent perceptrons.

With a perceptron, we can implement circuits that recreate

operators such as AND and OR. However, it is not possible

to implement a nonlinearly separable operation like XOR.

Marvin Minsky and Seymour Papert showed3 that not only 3 Minsky, M., S. Papert, and

. . . . L. Bottou (2017). Perceptrons:
it was not possible to compute an XOR operation with a An Introduction to Computational

Geometry. The MIT Press. MIT

single perceptron, but also provided arguments about it Press

being achievable with multiple layers of perceptrons. The
idea is to combine multiple neurons to perform more
complicated tasks, if only we can add another and another
layer of neurons to our model. As it turns out, the learning
algorithm proposed by Rosenblatt did not work for

multilayer neural nets.

The supervised nature of the task means that the correct

output expected is only specified for the final layer. We can

use this information to adjust the weights for the layer in . .
We will cover backpropagation in

question, but... how do we get to the hidden layers Section 4.3.3.

sandwiched between the output and input ones? The

answer, i.e., backpropagation, will have to wait for the lift of

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 211

the first AI winter to be widely spread. Nonetheless, the

ideas behind it were floating around much before then.

In the early 1970s the work of Paul Werbos to extend
beyond MADALINE enabled the development of a
backpropagation algorithm#*. This was largely unknown
until 1986 when Rumelhart, Hinton, and Williams
rediscovered it> and formalised it. They were able to set a
clear framework for the technique, finally making it the
well-known methodology we have today. Later in Section
4.3.3 we will address in more detail the workings of
backpropagation. In the meantime, it suffices to say that the
key aspect in its development is the realisation that if the
neurons are not perceptrons per se, but instead they are able
to compute their output with a nonlinear, differentiable
function, then it is possible to use the derivative to minimise
the errors incurred during training. In this way, with the aid
of the well-known chain rule we can calculate the derivative

for all the neurons in the prior layers.

With the advent of the backpropagation algorithm it was
possible to train mutilayer architectures, opening the door to
the development of convolutional neural networks (CNNSs),
first used by Yann LeCun et al.° to recognise hand-written
digits with application in optical character recognition. By
the end of the 1980s the interest in neural networks slowed
down again as the approach to-date was not able to scale.
Instead, algorithms such as the support vector machine
gained prominence and it was not for another decade or so

that neural nets regained interest.

4+Werbos, P. (1994). The Roots

of Backpropagation: From Ordered
Derivatives to Neural Networks and
Political Forecasting. Adaptive
and Cognitive Dynamic Systems:
Signal Processing, Learning,
Communications and Control.
Wiley

5 Rumelhart, D. E., G. E. Hinton,
and R. J. Williams (1986).
Learning representations

by back-propagating errors.
Nature 323(6088), 533-536

®LeCun, Y., Boser, B., Denker, J.
S., et al. (1989). Backpropagation
applied to handwritten zip

code recognition. Neural
Computation 1(4), 541-551

We discussed SVMs on Chapter 9
of Data Science and Analytics with
Python.

212 J. ROGEL-SALAZAR

In 1997 a recurrent neural network (RNN) framework
known as long short-term memory (LSTM) was proposed by
Hochreiter and Schimdhuber?, improving the efficiency and
practical use of RNNs as we shall discuss in Section 4.4.3.
By the mid-2000s, the term deep learning became ever more
popular thanks to the use of the word “deep” by Geoffrey
Hinton®9 and others to describe their approach to the
development of large-scale neural networks. There are many
more advances that merit more in-depth analysis than we
can do justice here, and largely speaking, areas of research
in Transfer Learning, Generative Adversarial Networks
(GANSs), Reinforcement Learning, hardware and software
developments will give us more food for thought in the

years to come.

All in all, for the different types of neural network
architectures we have mentioned above, the analogy of
neurons connecting with each other via their axons and
dendrites is a first image that comes to mind. We can
therefore start our journey by describing a general neural
network architecture as a collection of nodes connected with
each other so as to enable the transfer and manipulation of
information. The nodes are aggregated into layers and thus
the information flows from one layer to the next in a
directed manner. A typical neural network architecture can
be seen in Figure 4.1 where the nodes are represented by
open circles, and the connections between them are shown

as directed edges.

As we can imagine, the graphical representation we have is

similar to the graphs we discussed in Chapter 3. In this case

7 Hochreiter, S. and Schmidhuber,
J. (1997). Long short-term memory.
Neural. Comput. 9(8), 1735-1780

8 Hinton, G. E., Osindero, S., and
Teh, Y.-W. (2006). A Fast Learning
Algorithm for Deep Belief Nets.
Neural Computation 18, 1527-1554

9 Hinton, G. E. and

R. Salakhutdinov (2006). Reducing
the dimensionality of data with
neural networks. Science 313 5786,

504-7

A neural network is a collection of
nodes arranged in layers, enabling
information to flow from one layer

to the next.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 213

Input Layer Hidden Layer

Input 1

Input 2

we have a directed graph where the nodes belong to tiered
layers and the information in the network flows in a single

direction from one layer to the next.

Each of the edges in the network carries a weight and each
node is able to take the inputs provided and combine them
before passing them to the next tier of nodes. The learning
process enables us to adjust or “learn” the optimal weights
for the edges as the training proceeds, so that we make

predictions with the network. Let us now go deeper inside

this architecture.

Output Layer

Output 1

Output 2

Figure 4.1: Neural network
architecture with a single hidden
layer.

Each edge in the graph has its
own weight, and adjusting those
weights is the learning process for

a neural net.

214 J. ROGEL-SALAZAR

4.2 No-Brainer: What Are Neural Networks?

As WE HAVE SEEN IN the previous section, artificial neural
networks can be understood in terms of their diagrammatic
representations as graphs. Let us start delving into the
workings of these graphs and see how they are able to

learn patterns, see images, recognise speech and capture our

collective imagination.

6 -
' Output
wTL
Input
Figure 4.2: An artificial neural
network takes up an input and
The first thing to point out is that, unlike the graphs that combines the contributions of
. . . . the nodes to calculate an output
we analysed in Chapter 3, the information present in the § with the aid of a nonlinear
. . . functi ith th f it
graph is not embedded in the architecture of the network. i;lgfl::n Wit e sum ot
Instead an external input is required. This information is
then used to compute an output with a function of the sum Typically a nonlinear function.

of its inputs. We can represent this as shown in Figure 4.2
where we can see n nodes providing a contribution to the
calculation of the output § via a function f(-). Notice that

each edge i has its own weight w;.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 215

The network architecture that we have in place is a weighted
directed graph and our aim is to adjust the edge weights

w; as the learning takes place. We can think of this process
as having a set of dials to adjust the strength of a signal at
a given connection in the network. As it is the case in its
biological counterpart, the synapses between neurons may
actually fire, or be activated, if the aggregate signal is above

a certain threshold.

4.2.1 Neural Network Architecture: Layers and Nodes

AN IMPORTANT FEATURE OF THE architecture of our neural
networks is the fact that the nodes are arranged in layers. In
other words, the information in the network flows from one
layer to the next in the direction prescribed by the directed
edges. We count the number of layers starting effectively
from zero. That first layer is usually called the input layer
and it is made out of passive nodes that take the input. The
last layer is usually called the output layer and is made of
active nodes. That is to say that they take the outcomes

of the previous layer and modify the signals received. In
between the input and output layers, we can have any
number of so-called hidden layers. These hidden layers are
also made out of active nodes. In Figure 4.1 we showed a

typical example of a single layer neural network.

Each of the layers in the neural network architecture can
have any number of nodes and as such, both the number of

hidden layers as well as the number of nodes in each layer

are a couple of the parameters you need to decide upon first.

To continue using the brain
analogy, this would be the
strength of the synapses between

neurons.

How Pythonic... but actually just a

happy coincidence!

We shall talk about the number of

nodes later in this section.

216 J. ROGEL-SALAZAR

As the number of hidden layers in our architecture increases,
the deeper and deeper the input information needs to flow.
I do use the word “deeper” with a bit of intent as this is
what gives rise to the term deep learning to describe the
work done with large artificial neural networks. Today, deep
learning architectures have a wide range of applications
including speech recognition, computer vision, automatic
machine translation, text generation, image captioning, etc.

We will talk more about deep learning in Section 4.4.

Different layers in the architecture will perform different
kinds of manipulations and transformations on their
respective inputs. The nodes in the input layer perform no
computation; they simply, but importantly, pass on the
information to the nodes in the first hidden layer. The
hidden nodes carry out computation on the inputs received
and transfer the result to the next layers, all the way through
to the output layer. This process is usually known as
feedforward where the information moves in one direction

only; there are no cycles or loops.

The single layer perceptron that we mentioned in the
previous section is the simplest feedforward neural network:
It does not have hidden layers and it is only capable of
learning linear separable patterns. As the number of hidden
layers grows, we are able to accomplish more complex tasks
as shown in Table 4.1. The more layers we add, the more

effectively we can perform automatic feature engineering.

We mentioned above that each layer can contain, in
principle, any number of nodes. Deciding how many nodes

we put in each layer is as important as making up our

Deep learning refers to the use
of neural networks with a large

number of hidden layers.

In other words, the nodes in a
hidden layer.

Not yet!

The more layers we add, the
more effectively we can perform

automatic feature engineering.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 217

Number Table 4.1: Capabilities of neural
of Hidden Capability networks with a different number
of hidden layers.
Layers
0 Capable of representing only linear
separable patterns.
Able to approximate any function with
1 a continuous mapping from one finite
space to another.
Able to represent any arbitrary decision
’ boundary to arbitrary accuracy; can
approximate any smooth mapping to
any accuracy.
Complex representations can be learnt
3 or more by performing automatic feature

engineering of sorts.

minds about the number of layers. Although the hidden

layers do not directly interact with the outside world, they

do have a profound impact on the final output returned by

the neural network. On the one hand, having too few nodes

in the hidden layers gives rise to underfitting, as there are

not enough nodes to detect the potential complex patterns Deciding on the number of layers

. and the number of nodes in each
in our data. On the other hand, the presence of too many

is an important step.
nodes can also result in other issues. Overfitting is one of

them, as the extra capacity in the network enables the

system to memorise the attributes in the data, particularly

when the set is not large enough. Even in cases where there

is enough data, we need to take into consideration that the

more nodes we have in the hidden layers results in longer

218 J. ROGEL-SALAZAR

training times. Some rule-of-thumb recommendations
include having hidden layers with a number of nodes
bounded by the size of the input and output layers. A good

start is having around 60 — 70% of the number of nodes in

the input layer plus the number of nodes in the output layer.

Finally, do not include more than twice the size of the input
layer and remember that the ultimate architecture setup is a
matter of striking a balance, as it is the case in many other

areas of machine learning.

4.2.2 Firing Away: Neurons, Activate!

Now THAT WE HAVE A better understanding of the
architecture of our neural networks, we can delve deeper
into their inner workings. Let us consider a one-hidden
layer neural network as shown in Figure 4.3. Not only is this
architecture able to represent linear functions, but also
nonlinear ones. The input layer has three nodes, one of
which we have marked as bias with a value of 1, the other
two nodes take the values x1 and x;. These inputs are
passed to the next layer along with their associated weights.
Let us take a node in the (first) hidden layer of this neural
network (highlighted in gray). Actually, we can zoom in to
see what is happening there: See Figure 4.4. This hidden
node receives the inputs (1, x1, x2) along with the associated
weights (wp, wyw;) and uses the values to compute the
function f(-) whose argument is a sum of the inputs as

Y w;x;. This function is referred to as the activation function

and we shall talk more about it in the next pages.

Choosing the size of the hidden
layers is more data art than data

science.

Pun definitely intended!

We can extend this analysis to a

larger number of nodes.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 219

Input 1

Input 2

Figure 4.3: Neural network
architecture with a single hidden

The process described above is carried out for each of the layer, including bias. The inputs to

nodes in the first layer and the resulting value from the a node (marked in gray) are used
in conjunction with the weights
activation function is used as the input for the next layer, w; to calculate the output with
. o the help of the activation function
and so on. In the architecture shown in Figure 4.3, we have £().

two output nodes. After executing the same process with
the activation function f(-) their results (y1,y,) are the

output of the neural network.

The activation function is a nonlinear function. This is

because we are interested in representing complex,

real-world data with our neural networks. The activation The activation function is a
function therefore introduces a nonlinearity to the outputs nonlinear function.
of the node, enabling the architecture to learn these complex

representations.

We have been talking about the activation function as an
important part of our neural network, but so far we have

not said much about its structure. This is because there may

220 J. ROGEL-SALAZAR

be many options available to us. Each of these options offers
different ways in which the inputs are combined, and the

most common activation functions include the following:

* Sigmoid: This function takes a real-valued input and
maps it to a range of values between 0 and 1. The
sigmoid function is given by the expression below and
we can see a plot in the top panel of Figure 4.5

S(x) = exp(x)

~ 1+exp(x) (42)

* Hyperbolic tangent: This function also takes real-valued

inputs and maps them to a range of values in the interval

[—1,1]. It is effectively a rescaling of the sigmoid function:

_exp(2x) —1

tanh(x) =25(2x) — 1 = oxp(20) F 1

(4-3)

We can see the shape of the tanh function in the middle

panel of Figure 4.5.

Figure 4.4: Zooming into one of
the hidden nodes in our neural
network architecture.

We have encountered this
function in the context of logistic

regression!

This is a rescaled sigmoid

function.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 221

Sigmoid

]] i i i i
]]]]]]
s e B e A L
1 i | i i
] i i i)
i i i i i
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
f e e et .
i i i i i
i i i i i
U S T | -
i i i i | i
i i i i i i
i i i i i i
1 1 1 1 1 1
S NN S S -
1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
i i i i i i
i i : i i i
R R i gt e i~
1 1 1 1 1
1 1 1 I 1]
I I I I I I
1] 1 1]
| | | | |
S . 4 - +
i i I 1 I 1 |
1 1 1 1 1 1
I I I I I I
1 1 1 1 1 1
S O B
R T o=
i 0 iz 4 0 b |
I I i i i
1 1]]]
I [} i i i
| | | i |
s T S e S
| | | | | _
i i i i i
1 1 1 1 1
1 1 1 1 1
o TS ORRAISD . NP (PIORRL Bty £ ol 1|
]] 1 [} [} _
| | | | i 1
Il Il Il Il Il Il
T T T T T T
— =] o o o o

-

tanh

{ IEAEE R N el PR SO ol RN || I o RGN B SEF LA TR TR S

1.0 1

o e e e o

SR

e e

ey Ty

o e i

A el e L

S A S
1
i
i
i
i
1

R D S A

[

1 1 1 1
RS I—— ——, S——
T]]

]

i

i

1

I

1
——————]

i

i

i

i

I

i

e o e

1
1
i
i
i
e e A e e e

FRECIFITECES SN AR EICPTy T

f
i
oS

> 0.0

1 1

i Il

! !
ek Q
T T

RelU

T e TE Tl YT TE gy L] Ty e v e

e | ——

T
4

T
L
i
i
1
1
[}
1

SFASNSRERCAN WERSEPLINENIRT! UL

e i Bl e e T D e S L s e P e

8 4--

Figure 4.5: Some common

activation functions, including
sigmoid, tanh and ReLU.

222 J. ROGEL-SALAZAR

e Rectified Linear Unit (ReLU): This function places a
minimal threshold of zero to negative inputs, and maps

positive values to themselves:

£(x) = max(0, x). (4.4

The bottom panel of Figure 4.5 depicts this function

Softmax
0.016 - !

0.014 4

o1 M

0.010 A
SR Y,1: 1, SNSUEN RNPRIPURPES C SSSPNSS SSSPCUS S
0.006 -

e M S— IR | WU S— — R CH— -

0.000

Figure 4.6: A plot of the softmax

It may be the case that in our application we are interested function.

in generating probabilities as the outcomes of the activation

layer. In this case, we can make use of the softmax

activation function. This function is effectively a

generalisation of the sigmoid function. It takes real values As the entries of a softmax

as input and maps them to a probability distribution where function add up to 1, it can be

used to draw probabilities.
entry is in the range (0, 1]. Furthermore, all the entries add

up to 1. The softmax activation function is given by

Equation C.1 and a plot can be seen in Figure 4.6.

;Xpﬁ, fori=1,...,k.
Y1 exp(x))

softmax(x;) = 0(z;) = (4.5)

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 223

Once we have applied the activation function to the inputs
of the node in question, we are ready to pass the outcome
to the next layer in our neural network. We do this until
we reach the last layer, where the outputs are actually the
predictions made by the entire neural network architecture.

Et voila!

4.2.3 Going Forwards and Backwards

THE OUTPUT OF THE NEURAL networks we have discussed
so far has been obtained by taking forward the inputs from
one layer to the next. This kind of neural network is called
a feedforward network and the flow of information goes

in one single direction, not allowing for loops or cycles.
Feedback is therefore not possible. What happens if the
response we obtain from training our neural network is not
satisfactory? Well, in the case of a feedforward network, as

described above, there is not much we can do.

Nonetheless, it is possible to consider the following scenario:

Once we have obtained the final output of our neural
network, we can compare it to the labelled data used for
training. If the error is negligible we are done; however, if
the error is not acceptable we would like to provide this as
feedback to the neural network. In other words, we would

like the neural network to “learn from its mistakes”.

The process to enable this form of learning in a neural
network is known as backward propagation of errors, or
backpropagation for short. Following up the analogy about

learning from our mistakes we are, in a sense, asking the

So far, we have only fed the
information forward from the

input to the output layers.

We would like to be able to learn

from our mistakes.

Or actually the neural network’s

mistakes!

224 J. ROGEL-SALAZAR

machine to guess the value of the labelled data. The error in OK! estimate...
the guess is calculated and backpropagated so that a better

estimate can be made.

In this way, we are going forwards and backwards, and

forwards again until the error is within an accepted level

of tolerance. The way in which backpropagation estimates Or until we give up...
the error is by minimising a cost function, and therefore we

need to make use of calculus. A well-known optimisation

method used in this kind of tasks is gradient descent.

In the following sections we will cover in more detail the

implementation of backpropagation, but for the time being

let us spend some more time getting familiar with what is

happening at a high level. Let us start with our forward

propagation network as depicted in Figure 4.7, in panel a) We start we the forward

we have the situation described in the previous section. For propagation step. Nothing

unusual here.
our purposes, we have a neural network with one hidden

layer and three nodes in the input layer.

We need to bring the inputs (and bias) together with the
initial weights wg, w; and w, and make the appropriate
calculations with them. In order to track what is happening
to the weights, we are adding the superscript [0] to denote
(0]

the initial forward pass. In this way, the weights w;"! and

the inputs are combined in the hidden nodes by a given o)
We are not explicitly showing the

activation function. The results are then passed forward to weights used from the hidden

the output layer, where we get a target prediction, in this layer to the output later, but the

L . . same process applies.

case the output is either a 1 or a 0. Please note that in Figure

4.7 we are only labelling the weights that go from the input

to the first hidden layer. The other edgs in the architecture

carry their own weights too.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 225

Bias @ \
\ [0]

wy

(0)
Input 1 Q;" e Q \/ , Output Y

O30 e

[0]
w
Input 2 WY / O Target=0
P — S

Compute
gradient
\\
\\
Bias @ \ @ -
b\ Q Target=1
RN/
RN J
Ay
N
1] Target
w A
Input 1 O . O , Output jj «— Y
AVVA
et A0 e
Error term Error term
for hidden for output
layer layer

Bias @ \
\

Wl ;
Input 1 Q:’ 4 O\f Output ¢/

D=0 e

1]
Wo

[1]

w

Input 2 f ’ /_\‘ f Q Target=0
— _/—

Figure 4.7: Backward propagation
of errors, or backpropagation,
enables the neural network to
learn from its mistakes.

226 J. ROGEL-SALAZAR

We are now interested in checking if the prediction labels
obtained from the 0" forward pass are any good. We can
denote the output result as i and compare it to the actual
target y. The result of the comparison between y and §
contains useful information for the neural network as it
enables it to learn from its mistakes. In order to do this,
we make use of a loss (or cost) function, which enables

us to evaluate how well our chosen algorithm models the
training data provided. If our predictions are off the mark,
the loss function will return a higher value. However, if they
are good, the result of the loss function will be a smaller

number.

It is possible to propagate this information from the output
layer back to the hidden nodes, until it reaches the edges of
the input layer. In this way it is possible to enable the neural
network to identify the weights that need to be adjusted

to improve the predictions made. On the one hand, in the
cases where the prediction is different from the target label,
the neural network can adjust the weight that made this
prediction and improve the result. On the other hand, for
labels that have been correctly predicted, no adjustment

is needed. In order to propagate back the information, we
are in effect solving an optimisation problem for the loss

function chosen.

As mentioned above, a well-known algorithm such as
gradient descent can be used for the optimisation step, and
it requires us to be able to compute gradients. We will
provide further details about it in the next section. The

backpropagation step is depicted in Figure 4.7, panel b).

The comparison between actual
and predicted values enables the

network to learn from its mistakes.

Please note that since the weights
are combined by the activation,
changes in one may require

further changes in others.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 227

We are now in the situation shown in panel c) of Figure 4.7
where we reach the start of our learning loop. Now that we
have passed information back about the weights, the neural
network can make adjustments and the new weights let
us start a new forward pass. This step starts and follows
exactly the same logic as before, except that this time we
have new values w([)l], wgl] and wE]. Notice that we are using

the superscript 1 to denote the fact that we have a new

iteration.

From here on, the process continues as before: We use

the weights and inputs to make calculations using the
activation function, and pass the results to the next layer.
When we reach the output layer, the new prediction results
are compared with the targets. The fact that we are using

a minimisation process indicates that we are expecting
lower and lower values from our loss function. We continue
iterating over our neural network sending information
back and forth until we reach a chosen tolerance on the
values of our loss function. At that point, we can stop the
iterations and we have a neural network that has learnt from
its mistakes in making predictions when comparing to the
target labels provided. We are ready to unleash the model to
the world and confront real data. Let us now take a look at

implementing this workflow in more detail.

4.3 Neural Networks: From the Ground up

WE HAVE COVERED QUITE A few of the concepts behind

a neural network architecture and understand the main

We start a new forward pass with

the new adjusted weights.

We iteratively adjust the weights
until we reach an optimal solution,
sending information forth and
back through the layers of the
network.. You are right, the phrase
goes “back and forth” but that
seems wrong for an ANN!

228 J. ROGEL-SALAZAR

ideas behind their “learning”. In this section we are going
to implement an artificial neural network with three layers:

The input and output layers and one hidden layer.

The goal is to see how the concepts described above

translate into code with Python. The code is not meant to be Take this implementation with a
the most efficient implementation ever and there may be “brain” of salt!
other ways to achieve the same results in a better way. Take
this implementation for what it is, and we will cover other

alternatives later on in this chapter.

Let us imagine that we are interested in discriminating

between two classes of animals, say cats and dogs. In

Chapter 5 of Data Science and Analytics with Python'®, we Rogel-Salazar, J. (2017). Data
. . . . Science and Analytics with Python.
encountered a friendly alien life-form that was tasked with Chapman & Hall/CRC Data

Mining and Knowledge Discovery

clustering animals on Earth based on similarities and Series. CRC Press

differences between them: Cats have pointy triangular ears,

whereas rabbits have long oval ones; horses have manes and

deer have antlers. This provided our alien friend with rules

that can be used in classification based on the labels we have

obtained for the animals shown to it. In this case we are It? him? her? them?

assuming that the labels have already been identified and

that we have a dataset containing animals with their

corresponding label: Cat or dog. The next task for the alien =~ We should have asked for a name

. . . and preferred pronoun! Ma-Sha
is therefore to obtain a model that enables it to correctly

from Gazorpazorp? She may even
predict whether she has a cat or a dog in front of him, given =~ have a Marc Jacobs top by now!

the different features provided to them.

From our previous discussion, we know that training an
artificial neural network involves choosing a number of

nodes in our hidden layer(s). It stands to reason that the

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 229

more nodes we include, the more complex our neural

network becomes, and the hope is that we will be able to fit Higher complexity may mean
more complex functions with it. However, we need to take higher computational cost.
into account the balancing between high dimensionality and

hence complexity, versus the computational cost incurred.

We did mention in Section 4.2.1 that choosing the right

number of hidden nodes is more data art than data science.

For our current purposes we are going to consider playing

with the number of hidden nodes in the architecture and see

how this affects our output.

4.3.1 Going Forwards

WE START BY MAKING OUR way forwards from the input

layer and into the depth of our neural network architecture.

In practice, the way to achieve this is via the application

of matrix multiplication, and of course of the activation

function chosen for the task. Let us consider our input to We will use matrices to represent
be given by a 2-dimensional matrix X which will render our neural network model.
our prediction denoted by . We will denote the vector of
weights from the input layer to the first hidden layer as W,
and thus we can calculate the combination of the inputs

with the weights as:

This is the combined result of our
z1 = XWq + by, (4-6)

inputs.
please note that both W; and b; are parameters of our

network that need to be learnt from training data.

We can pass the result z; to the activation function, and here

we will use the hyperbolic tangent for the hidden layer. This

230 J. ROGEL-SALAZAR

means that the output will be given by:
a1 = tanh(zq). 4.7)

We are now able to take the output a; of the hidden layer
and pass it as the input to the next layer in our network.
Remember that in this particular architecture this is actually
the output layer. In this case we have that the combination

of the input a; and the weight vector W; is given by:
2o = a1 Wy + by. (4-8)

For the activation function in the output layer, we will use
the softmax function which will let us convert our scores to
probabilities:

a =§ = 0(z2). (4-9)

Although we have written the expressions above specifically
for our three-layer neural network, it is easy to generalise
the equations noting that z; corresponds to the weighted
sum of inputs of layer i and thus g; is the output of the i-th
layer after applying the activation function chosen for that
layer. In effect we have a pipeline of matrices that transform
our data from one layer to the next, enabling along the way

some featuring engineering in an automatic way.

Let us stop for a moment to consider the dimensionality of
our matrices. For a 2-dimensional input X, with a single
hidden layer comprising n hidden nodes we have that our
parameters are W; € R%*" by € R", W, € R"*2, b, € R2.
We can see how the complexity becomes larger not only as

we increase the number of nodes in the layer, but also as

This is the output of the hidden
layer.

Once more, we calculate the

combination of inputs.

And this is the output of the entire

network.

With one hidden layer.

Checking the dimensions of our

matrices is a good practice.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 231

we increase the number of layers, and indeed the number
of nodes in them. Keeping track of all the transformations
that larger, deeper neural networks perform could become a

truly gargantuan task.

The calculations above can be generalised to a neural
network with L layers. We denote the activation of the
nodes in layer I as a column-vector a/, the edges from the
nodes in layer I — 1 to layer / are stored in the weight matrix
W/ and the biases in the column vector b’. For the forward

pass, given the activation function f;, we have that:
a = fi (Wlal_1 —I—bl) . (4.10)

Note that we are taking into account the possibility that the
activation function on each layer may be different, perhaps
ReLU, softmax or even a hyperbolic tangent. The general

architecture of the network can be seen in Figure 4.8.

To calculate the input sums and move forward in the
network, let us consider three adjacent layers in the
architecture as shown in the middle part of Figure 4.8. Let
us index the nodes in the layers I — 1, I and I + 1 as m, p and

g, respectively. The input sum of a node p in layer [is:
zi, = ;anpafn_l + b;, (4.11)

where we are adding the contributions of all nodes m in
layer I — 1. We can calculate the activations in layer [as

aé = fl(z;) and thus the input sum of a node g in layer + 1
is:

sz’l =) W,;;,"lalp + bffl. (4.12)
P

Let us generalise the ideas above

to L layers.

The activation function can be

different for each layer.

This corresponds to the
generalised combination of

inputs.

232 J. ROGEL-SALAZAR

al+1

”‘\4

QOO0 ®=

OO0

<0000

mp

QOO (O~
OO0000x

WI W1+1

<

In this way we have moved forwards in the network from
one layer to the next. We continue doing this until reaching
the output layer. So far so good, and now how do we learn

the parameters? Let us take a look.

4.3.2 Learning the Parameters

THE TASK DEFINED ABOVE REQUIRES us to determine the
paramaters (Wj, by, Wy, by) such that we get a minimum
error on our training data. The crucial part at this moment

is defining that error in terms of a suitable loss function. In

00O
S50

WL

Figure 4.8: General architecture of
a neural network; we are showing
the labels of the different L layers
in the network.

We need to minimise a cost/loss

function.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 233

the high-level description in the Section 4.2.3 we mentioned
that a comparison between our prediction § and the true

class labels of y would be ideal.

A suitable choice, with the softmax activation function we
have for our output layer, is the cross-entropy loss. Let

us consider that given a model for which c classes are
predicted, the hypothetical occurrence probabilities are
1,92, .- .,7c. If we observed kj instances for the first class,
ko for the second, and so on we have that the likelihood

is P(data|model) = TI.9%. For N = ky + ko + - + ke

observations we can write the following expression:

. 1 .
Llyy) = —xlogllyc"
1 .
= _lekil(’g]/i

= —)_yilogy; (4.13)

where y; = k;/N correspond to the empirical probabilities.
For the case of two classes we have that the true observed
probabilities are such that y» =1 —y; = 1 — y, and the same
applies to the predicted values. Therefore we can write

Equation (4.13) as:
Ly, 9) = —ylogg — (1 —y)log(1=79). (414)
In practice the loss function implemented in applications

including logistic regression is an average of all

cross-entropies. In the case where we have N data samples

The cross-entropy loss function
is a suitable choice for many

situations.

Binary classification is a good

typical case.

234 J. ROGEL-SALAZAR

the loss function is calculated as:

1

Ly.9) = — 7

y" log g™, (4.15)

M=
agle!

n=1i=1

This expression lets us sum over each of our training data
points and whenever we predict the incorrect class, we
add to the loss. In other words, in cases where the two
probability distributions y and § are far away, we have a
greater loss. Our goal is to find parameters that minimise
the loss, and thus maximise our predictions to match our
training dataset. Let us see how the minimisation can be

done.

4.3.3 Backpropagation and Gradient Descent

Now THAT WE HAVE A loss function, we need to use an
optimisation method to find its minimum. Gradient descent
algorithms find the optimal for a loss or cost function by
changing the parameters of a model such that the gradient

of the errors points down to a minimum error value.

We can make use of any optimisation technique we prefer
and there are many out there from which to choose, ranging
from brute force search all the way through to generic
algorithms. The important thing is to be able to change the
parameters of the neural network. However, as the
complexity of our network increases we must take into
account that the number of parameters to track becomes
larger and larger and we would like it to be as
computationally efficient as possible. Calculus is a good ally

to every savvy Jackalope data scientist.

Remember that it is possible to
add a regularisation term to the

loss function.

Gradient descent is a popular

optimisation method.

In principle, any good
optimisation method can be

applied.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 235

\lg /
AL /
\ & /
\ /
\ /
\ /
/
\ /
\ /
\ /
\ : /
/
A\ /
\
, \\ //
mereds Cc ad
daramete \ paramete
value \ lu
\ ’/
225 2 5 1 0 0 0.5 1.5
l
[

Figure 4.9: The derivative of a
function f indicates the rate of
change at a given point. This
information lets us change our
parameters accordingly.

A useful and fundamental concept from calculus is that of
the derivative of a function. It basically provides a gauge to
the rate of change the function experiences at a given point.
In our case we can use this tool to check how much the
error in our predictions changes when we change one of the
parameters we would like to learn. Consider for instance
the 2-dimensional function f depicted in Figure 4.9, where a

clear minimum is shown.

If the function represents the cost, a positive value for its

derivative indicates that the error increases if we increase

236 J. ROGEL-SALAZAR

the value of our parameter. If that is the case, we need

to reduce it and hence we move towards the function’s
minimum. If, however, the derivative is negative, the error
is decreasing, and therefore increasing the value of our
parameter gets us closer to the minimum. If the derivative
has a value of 0 we have reached a stable point, i.e., the

minimum, and we are done.

We can think of the description above as a skier who is
trying to reach the valley and stop for a well-deserved
refreshment. She would like to get to the lodge as swiftly
as possible and that means finding the slope with steepest
descent to reach her destination. If she chooses a path
where the slope is increasing, she should change direction.
That in a nutshell is what we are doing with the gradient
descent algorithm. The case shown in Figure 4.9 can be
described in terms of an ordinary derivative; however, when
we have multiple parameters we will require the use of

partial derivatives.

Now, for the backpropagation of the errors in our neural
network, we can apply the derivative trick and trace back
our steps in the network architecture. Our starting point
now is the output layer. We calculate the partial derivatives
of the loss function with respect to our parameters and
propagate the errors back to the input layer. The gradient
descent algorithm requires as input the gradients of the loss

function:
oL oL oL oL

W, " 9by” OW, by

Local minimum...

Think of the algorithm in terms
of a skier that wants to reach the

lodge as swiftly as possible.

In other words, the vector of

derivatives.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 237

Remember that our neural network carries out the following

computations:

z1 = XWp+by, (4.16)
ap = tanh(z), (4.17)
z2 = aiWp+b, (4.18)
a = o(z)=7. (4.19)

We use this information to update our parameters, and we
do this with a particular learning rate, &, such that for a

parameter W; the update is given by:

oL
Wi :=W; — zxa—wi, (4.20)
and for b; we have:
JoL
b; :==b; — zxa—bi. (4.21)

We need to calculate each of the gradients and the
application of the chain rule makes this task easier. Let us
start with the derivative of the loss function with respect to

the parameter by:
oL dL 0z

b, 9z, 90, (4.22)

We have that:

0z _ a(lZle-i-bz) _
W o L (4-23)

We obtained these expressions in

Section 4.3.1.

The learning rate, a, is a

hyperparameter of our model.

The chain rule to the rescue!

238 J. ROGEL-SALAZAR

For the partial derivative of the loss function with respect to

the variable z, we have that:

oL dlogo(zy) dlog(l—o(z2)))

R el G) P /
S
= —y(1-0(z))+ 1 -y)o(z),
= o(m)-y=9-v. (4-25)

Expression (4.24) requires us to compute the derivative of
the softmax function and more information can be found
in Appendix C. Furthermore, a general derivative of the

loss function with respect to parameter z; can be found in

Appendix D.

We have now all the information to calculate the derivative

of the loss function with respect to the parameter b,. Let us

take a look:
oL dL oz,
M, ~ 32,90 7—y. (4.26)
The derivative of the loss function with respect to the
parameter W, is given by:
ai_aiﬁ_a(_) (4.27)
8W2_8228W2_ w=y- 427

In a similar way, we can make use of the chain rule to

calculate the derivative of the loss function with respect to

We need to calculate the derivative

of the softmax function.

Once more we use the chain rule.

And again...

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 239

b1 as follows:

JdL dL 0z, daq Iz

8b1 aZZ 8111 821 ab1 !

= (7 - y)Wa(1 - tank’(z1)). (4.28)

Following the same train of thought, finally the derivative of

the loss function with respect to W is:

oL oL aZZ aﬂl azl

oW, 0z day dz1 oW,

= (J—y)Wa(1— tanhz(zl))X. (4.29)

Let us now go back to the generalisation introduced in
Section 4.3.1 and use the indexing shown in Figure 4.8.
Given a loss function L, we can calculate its derivative with

respect to a single weight in layer I:

9L oL dz,
oWy, ozl oW},
I ol
oL aa,, azp

34l 9zl gwl 7
day, 9z, oWy,

y oL aszl 8alp az;,
7 0zt 0wy) 9z), W,

oL I
— Z W +1>
1 qap
(q azq+1

fl/(zéa)aqul-

(4.30)

We know the drill by now...

Don’t we?

We can now generalise our

calculations.

240 J. ROGEL-SALAZAR

We are including a sum to account for all the contributions
from the nodes in layer I + 1. This is because their values
have an effect on the overall error as they depend on the

weights with respect to which we are taking the derivative.

Furthermore, in the expression above we are fixing p and
m and as a result we can see what happens to the error
when changing one single weight. We can also look at how
the total error changes when the input sum to a node is

modified:

oL
I _ _ I+1 I
op = P (2 azlqﬂwqp) fi(zp), (4-31)

q

where we have used the result in expression (4.30). This

hints to a recursive formula such that:

G- (g) ie e

9

As for the derivatives of the loss function with respect to the

biases we have:

oL 9L 3z, 3L

o = 3 35 = 50 () =% (4:33)
ovl, — ozl obl, o, P

We can now use our recursive formula to obtain the error of

the nodes in the final layer L:

oL 9L dak, oL
5L —_ ——— 77"1 —_ — / L . .
"= 5L = 3l 92k~ aar)1 Fm) (4-34)

Remember that we need to take
into account the contributions

from all input nodes.

This is the total error change given
by the change in the input sum to

a node.

We have obtained a recursive
function that can be applied to our

model.

Which turns out to be very handy!

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 241

Using these recursion formulas, we can verify the

expressions we obtained before:

oL dL do(zz)
(2) = _— = — 2 =17 —
J b, om on, UV (435)
oL dtanh(z;)
1 = 2= s@Qp, =
° ab ~ 0 Vg
= 5(2)W2 (1 - tanh2(21)> (4-36) We obtained these expressions at
the beginning of this section.
oL 0z
= s@22 _ 502
W, J W, 0 ay (4-37)
oL 0z
— smZ s
T o S =0 (4.38)

Now that we have the equations that enable us to

backpropagate errors, we can consider some aspects of the

computational implementation of the optimisation

algorithm. There are different variations and one of the

most common is the so-called stochastic gradient descent In stochastic gradient descent,

where the model is changed for each training example in we update the model for every

training data sample.
the dataset. In this case, the data effectively becomes
available to the algorithm in sequential order. This kind of
methodology is sometimes called online machine learning.
Although we may get a more immediate view of the
performance of the model, it is a computationally intensive

affair as well as being prone to be affected by noise.

A variation on this theme is the use of the so-called batch In batch gradient descent, the

gradient descent where the changes in the model are model is updated after all the

training samples are considered.
calculated for each training sample, but crucially, the model

242 J. ROGEL-SALAZAR

is updated once all the training samples have been
considered. A full loop through the complete training
dataset is called an epoch and we update the model at the
end of each epoch. The batch methodology makes our
computation more efficient compared to the stochastic
approach. It also provides us with a more stable error
estimation. However, we need to be mindful of potential
premature convergence given that stability. Similarly, large

training datasets may give us very slow execution times.

A variation on the batch methodology that splits the
training dataset into small batches can be used too. This is
called mini-batch gradient descent and serves as a balance
between the stochastic and batch methodologies described
above. Mini-batch lets us update the model with a higher
frequency than batch while being more efficient than the
stochastic approach. The batching of the training dataset
also makes it more manageable for large sets. The batch size

needs to be adjusted depending on our application.

Note that although our goal is to find the parameters of
the model, we need to be aware of any hyperparameters
for our model. In the case of mini-batch, not only do we
need to find a suitable number of epochs but also the batch
size. When the batch size is equal to the size of the training
dataset we recover the batch methodology, whereas when
the batch size is equal to a single data point we have the
stochastic one. Masters and Luschi'® advocate the use of
small batch sizes, between 2 and 32 for example. Some

popular batch sizes include values such as 32, 64 or 128.

An epoch is a full loop through
the complete training dataset.

In mini-batch gradient descent,
we split the training set in smaller
batches.

The batch size describes the size of
the mini-batch!

" Masters, D. and C. Luschi

(2018). Revisiting Small Batch
Training for Deep Neural

Networks. Computing Research
Repository http://arxiv.org/abs/1804.07612

http://arxiv.org/abs/1804.07612

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 243

As for the epochs, let us recall that they refer to the number

of iterations our algorithm runs through the entire training

dataset. Each epoch has therefore one or more batches. Remember that an epoch has one
When the number of batches per epoch is equal to 1, we or more batches.
have a batch gradient descent implementation! In cases

where we have 2 or more batches per epoch we effectively

have a couple of nested loops. One loop is over the number

of epochs, where the entire training dataset is utilised;

inside this loop we have another one that runs through

the number of batches specified. In general the number of

epochs can be typically on the order of hundreds so that Even thousands!
the algorithm has enough time to learn the parameters that

minimise the error.

What does this all mean in more concrete terms? Let us
assume that we have a dataset with 1000 data points and
we have chosen a batch size of 32 with 2000 epochs. We are

requiring our dataset to be divided into 31 batches of 32

Note that we are leaving 8

samples and therefore we will update our model 31 times samples out... We can choose
. better batch size t 11
per epoch. With 2000 epochs we have 62,000 batches to go Za; er pateh e fo e Al ot
through while training our neural network.
4.3.4 Neural Network: A First Implementation
WE HAVE BEEN THINKING ABOUT ANNSs and the way they
work, and you may be asking yourselves where the code is.
Without further ado, let us provide a first implementation.
Remember the caveat we clarified at the beginning of We did mention to take this

implementation with a “brain” of

Section 4.3: This may not be the best implementation, and W
salt!

the aim is to demonstrate the concepts discussed above.

244 J. ROGEL-SALAZAR

o ©
1.0 o o 3
© %%j; &0

o Oo o o % o© (e]
o Q0 Q80 *9 °
051 o 00%6983 Q0 @ 0'.%8000 %(;3% .,; [
~) o)
) O&go &, %0 e .:.03..0 g;:g? o® ..b?
0% %P " ° ‘.’0 * o i
0.0+ o o ° Q0 %ee 00 o ?t e °
% .o:’ ™ ® oo e adoe s
o o° b ." ‘g’ < °
—0.5- o . O.J :?:’5&0 °
%.0... - > r 4
-15 -10 -05 0.0 0.5 1.0 15 2.0

Let us consider the dataset shown in Figure 4.10. It contains
observations corresponding to two classes labelled 0 and 1
described by two features x; and x;. The dataset called
neuralnet_dataset.csv' can be obtained at
https://doi.org/10.6084/m9.figshare.9249074.v1. We
can see that a linear classifier may be able to do an alright
job in separating the two classes, but it would be a hard task
to improve the discrimination given the semi-circular trends
shown in the plot. Similar datasets can be generated with
Scikit-learn with the help of the make_moons command. Let

us start by reading the data:

Figure 4.10: Observations
corresponding to two classes,

0 and 1, described by features x;
and x,. We will use this data to
train a neural network.

? Rogel-Salazar, J. (2019b, Aug).
Neural Network - Observation
dataset. https://doi.org/10.6084/
mg.figshare.9249074.v1

https://doi.org/10.6084/m9.figshare.9249074.v1
https://doi.org/10.6084/m9.figshare.9249074.v1
https://doi.org/10.6084/m9.figshare.9249074.v1

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 245

df = pd.read_csv(’'neuralnet_dataset.csv’)

X

We are reading our data into a
df[['x1’, 'x2']].values Pandas dataframe.

df[’'label’].values

y

Let us define a few parameters that will be used in

determining the architecture of the neural network as

described in the previous sections. We need to keep

information about the number of samples in the training set

as well as the number of nodes in the input and output

layers. We are building a one-layer neural network, with its

corresponding input and output layers. For the input layer

we will have two nodes, one for each of the two features, x;

and x; in our dataset. For the output layer we will also have

two nodes, one for each class to be predicted. We can then We could actually use one node in
the case of binary classification.

see how this can be extended for multiclass problems. The

architecture is the one shown in Figure 4.1.

n_training = df.shape[0]

) We have 2 nodes in the input and
input_layer = 2

output layers.
output_layer = 2
We also provide a value for the learning rate &, and should
we require a regularisation term in the cost function we also
need the value for the hyperparameter A:
alpha = 0.01 We define « and A, our
lambda_reg = 0.01 hyperparameters.

In order to keep track of the neural network parameters

W; and b;, we will store and modify the values in a Python

246 J. ROGEL-SALAZAR

dictionary. We will provide the number of nodes in each of
the layers to initialise the model. The number of nodes in
the hidden layer is one parameter we will need to decide
upon, and in this case we are going to show the effect of
the number of hidden nodes in the layer. Let us start with a

hidden layer comprising 3 nodes.

def init_model(input_layer=2, output_layer=2,\
hidden_layer=3):
np.random.seed(42)
W1l = np.random.randn(input_layer,\
hidden_layer) / np.sqrt(input_layer)
bl

np.zeros((1l, hidden_layer))

W2 = np.random.randn(hidden_layer,\
output_layer) / np.sqrt(hidden_layer)

b2 = np.zeros((1, output_layer))

nn_params = {}
nn_params = {'W1’: W1, ’'bl’: bl, 'W2': W2,\
"b2': b2}

return nn_params

Our model can be initialised as follows:

nn_model = init_model(input_layer,\

output_layer, 3)

With the help of Equations (4.6)-(4.9), we can write a
function that implements the forward propagation step in

our neural network. For the hidden layer we are using a

We also need to decide the
number of nodes in the hidden

layer.

This functions initialises our

model.

In this case we have a model with

3 nodes in the hidden layer.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 247

hyperbolic tangent activation function. Since the output will
be given in terms of probabilities for each of the two classes,

we use the softmax activation function:

def forwardprop(nn_model, X):
W1, bl, W2, b2=nn_model[’'W1’], nn_model[’bl’'],\
nn_model[’W2'], nn_model['b2’]

z1 = X.dot(W1l) + bl
al = np.tanh(zl)
z2 = al.dot(W2) + b2

e_scores = np.exp(z2)
prob = e_scores / np.sum(e_scores, axis=1,\
keepdims=True)

return prob

Once we have the forward propagation step, we need to
evaluate the loss incurred and therefore a function to this
end is required. We will implement the cross-entropy loss

function including a regularisation term as follows:

def loss_eval(nn_model, X, y, lambda_reg):

W1, bl, W2, b2=nn_model[’W1’], nn_model[’bl’],\
nn_model['W2'], nn_model[’'b2’]

prob = forwardprop(nn_model, X)

logprobs = -np.log(prob[range(n_training), yl)

data_loss = np.sum(logprobs)

data_loss+=lambda_reg/2 =\
(np.sum(np.square(Wl))+\
np.sum(np.square(W2)))

return data_loss * (1./n_training)

This function implements

the feedforward step in our
neural network. We are using
a hyperbolic tangent as the

activation function.

We evaluate the cross-entropy loss

function with this implementation.

248 J. ROGEL-SALAZAR

Now that we have an evaluation of the loss, we can start the
backpropagation step with learning rate «. In this case we

are making use of our formulation from Equations (4.35)-

(4.38).

Remember that we are seeking to update the parameters of
the model and thus we return a dictionary with the required
information after the backpropagation step is completed.
This in turn can be used as the input for the next forward

propagation step:

def backprop(nn_model, X, y, prob, alpha=0.01):
W1, bl, W2, b2=nn_model[’W1’], nn_model[’'b1l’],\
nn_model['W2’'], nn_model['b2’]

z1 X.dot(W1l) + bl

al = np.tanh(zl)

delta2 = prob
delta2[range(n_training), y] -=1
dw2 (al.T).dot(delta2)

db2

np.sum(delta2, axis=0, keepdims=True)
deltal = delta2.dot(W2.T)*(1l-np.power(al, 2))
dWl = np.dot(X.T, deltal)

dbl = np.sum(deltal, axis=0)

W1l += -alpha * dwl

bl += -alpha * dbl

W2 += -alpha * dW2

b2 += -alpha * db2

nn_model = {'W1’: W1, 'bl’: bl,\
"W2': W2, 'b2’': b2}

return nn_model

And now the backpropagation
step.

Et voila, the backpropagation

implementation.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 249

In order to get a final prediction from the model, we

implement a function for this purpose:

def predict(nn_model, x):
We can obtain predictions with

prob = forwardprop(nn_model, x) this piece of code.

return np.argmax(prob, axis=1)

Now that we have all the parts, we can build our neural
network and implement a batch gradient descent for a

chosen number of epochs:

def neural_net(X, y, input_layer, output_layer,\
hidden_layer, alpha=0.01, lambda_reg=0.01,
epochs=30000, print_loss=False):
nn_model = init_model(input_layer,\
output_layer, hidden_layer)
We can now put it all together

o in a batch gradient d: t
for i in range(0, epochs): fh & batch gradient descen

implementation.
prob = forwardprop(nn_model, X)
nn_model=backprop(nn_model, X, y,\

prob, alpha)

if print_loss and i % 1000==0:
print(’Epoch {0} loss: {1:.{2}f}'.\
format(i, loss_eval(nn_model,\

X, y, lambda_reg), 4))

return nn_model

250 J. ROGEL-SALAZAR

Figure 4.11: Classification
boundary obtained with a 3-

Let us train our neural network with a 3-node hidden layer: node hidden layer neural network.
The discrimination is modelled
well with a cubic-like function.

nnet = neural_net(X, y, input_layer, output_layer,\
3, alpha, lambda_reg, print_loss=True)

A typical run of a neural net

Epoch 0 loss: 0.4451 training provides information

about the loss at the end of each
Epoch 1000 loss: 0.0942
epoch.

Epoch 28000 loss: 0.0921
Epoch 29000 loss: 0.0922

We can see the decision boundary obtained with this
architecture in Figure 4.11 where we can see how the
discrimination of the two classes is modelled with a

cubic-like function.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 251

It is now easy to implement a loop so that we investigate

the effect that hidden layers of different sizes have in the

predictions we make. Let us consider hidden layers with

1,2, 3,10, 30 and 50 nodes. We know that the larger the Different hidden layer sizes
number of nodes in the hidden layer, the more complex provide different boundaries.
the network, and hence the more complex the classification

boundaries we can generate. This of course comes at the

cost of potential overfitting.

We will store the weights of each model in a dictionary
called nn_models so that we can retrieve the chosen model
with ease. Furthermore, we will make use of the time
library to get a measure of the execution time for each of the

architectures:

hidden_layers = [1, 2, 3, 10, 30, 50]

import time

nn_models = {}

We can see the effect of various

for hidden_node in hidden_layers: layer sizes. In this case, a layer

print(’{0}-node hidden layer’.\ with 1, 2, 3, 10, 30 and 50 nodes.
format(hidden_node))

start = time.time()

nn_models[str(hidden_node)] = neural_net(X, vy,\
input_layer, output_layer, hidden_node,
alpha, lambda_reg)

stop = time.time()

d = stop-start

print(’Execution time: {0:.{1}f} sec’.\
format(d, 2))

252 J. ROGEL-SALAZAR

A typical run of the loop defined above would look similar

to the following output:

1-node hidden layer

Execution time: 8.97 sec

2-node hidden layer

Execution time: 8.83 sec

50-node hidden layer

Execution time: 49.03 sec

In Figure 4.12 we can see some classification boundaries
resulting from the code above. Notice that the neural
network with 1 hidden node is effectively a linear classifier,
not dissimilar to an implementation of logistic regression for
example. The classification boundary is a straight line, and
empirically we can see a number of misclassified data

points.

As we move to 2 nodes we start seeing the non-linearity

in the boundary. We had already seen the 3-node case in
Figure 4.11 and it is great to see the result in context. By the
time we reach 10 nodes, the boundary starts becoming more
intricate. In the cases with 30 and 50 nodes the boundaries
are increasingly curvier, trying to separate the two classes
more and more. We can see the balancing act we need to
perform between getting a good enough prediction and

avoiding memorising our training dataset.

Note that the times may vary
from run to run and computer to

computer.

A hidden layer with 1 node is as

good as a linear classifier.

As we add more nodes, we get
more intricate boundaries and
separate our classes better. Beware

overfitting though!

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 253

1-node hidden layer 2-node hidden layer

3-node hidden layer 10-node hidden layer

-1.0

-0.5

Figure 4.12: Classification
boundaries for a neural network

with one hidden layer comprising
1,2, 3,10, 30 and 50 hidden nodes.

254 J. ROGEL-SALAZAR

4.4 Neural Networks and Deep Learning

WE HAVE SUCCESSFULLY BUILT OUR first neural network
from scratch, deserving a celebration worth remembering. Who's for fruit cake? Maybe

Not only have we covered a lot of the foundational concepts two dozens fruit cakes, a dozen

macaroons and some nice vanilla
in neural networks, but also paved the road to addressing

sponge would do for celebrations.
useful extensions to those ideas. A case in point is the

recent explosion in the use of deep learning for a variety

of applications, from automatic machine translation, to

computer vision and even medical diagnosis.

In Section 4.2.1 we first introduced the term deep learning

in the context of explaining the layers and nodes inside a

neural network. As we add more and more hidden layers Deep learning refers to the use or
to our network, with a larger and larger number of nodes large multi-layer networks.
we require for our inputs to flow deeper and deeper into

the architecture we built. In that sense, we are moving from

having 1, 2 or 3 hidden layers to having hundreds of them.

A complex architecture like that is suitable to be used when

having large sets of labelled data, with rich features and

patterns to be learnt by the deep neural network.

Given their usefulness, deep neural networks have gathered

a lot of attention and constructing them in the way we did

for our humble 1-layer network in the previous section isno ~ We need a better framework to
longer feasible. Instead, there are a number of frameworks build large networks.
and libraries that make this task much easier and more

understandable, as well as enabling us to make use of better

implementations and the best in class in terms of hardware,

such as graphics processing units (GPUs).

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 255

Some of the most notable frameworks include Google’s own
TensorFlow™3 with low level implementations for deep
learning and a low level APL Similarly, one can think of
implementing things in Caffe'4 developed by the Berkley
Vision and Learning Center with a focus on speed.
Although neither TensorFlow nor Caffe is a Python library
per se, they do offer bindings into Python making things
more approachable for us. Other options include Theano'>
which can be compared to what scipy has done for scientific
Python. We also have libraries such as Apache MXNet'®,
Microsoft Cognitive Toolkit (CNTK)'7 and Facebook’s
PyTorch'®.

As you can see, the ecosystem is a vast one and there are
many more tools out there than we could be able to cover in
this book. All in all, we are interested in a framework that
enables us to use some of the most up-to-date techniques
in the deep learning arena, while keeping a high level
language interface. This will enable Jackalope data scientists
like us to abstract some of the low level implementations
and use modular libraries to carry out deep learning tasks.
For these reasons, we are going to cover the use or Keras in

this book.

Keras' offers a high-level API written in Python supporting
backends such as TensorFlow, CNTK and Theano. Keras
enables experimentation and rapid prototyping, while
keeping with the Pythonic philosophy of readability and
user friendliness. It started life as part of the ONEIROS
research effort. The name is the Greek word for “horn”

(k&pug) in reference to the Hellenic literary image of the

3 Abadi, M. et al. (2015).
TensorFlow: Large-scale machine
learning on heterogeneous
systems. http://tensorflow.org/.
Software available from
tensorflow.org

“Jia, Y. et al. (2014). Caffe:
Convolutional Architecture for
Fast Feature Embedding. arXiv
preprint arXiv:1408.5093

5 Al-Rfou, R. et al. (2016,

May). Theano: A Python
framework for fast computation of
mathematical expressions. arXiv
e-prints abs/1605.02688

1 Chen, T. et al. (2014). CMXNet:
A Flexible and Efficient

Machine Learning Library for
Heterogeneous Distributed
Systems. arXiv preprint
arXiv:1512.01274

7 Github (2018). CNTK:

The microsoft cognitive tool.

https:/ / github.com/Microsoft/CNTK/.

Accessed: 2018-08-13

8 Paszke, A. et al. (2017).
Automatic differentiation in
PyTorch. In NIPS Autodiff Workshop

9 Chollet, F. et al. (2015). Keras.
https://github.com/fchollet/
keras

ONEIROS stands for Open-ended
Neuro-Electronic Intelligent Robot
Operating System.

http://tensorflow.org
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/Microsoft/CNTK
http://tensorflow.org

256 J. ROGEL-SALAZAR

gates of horn and ivory that distinguish between true (horn)
and false (ivory) visions or dreams. Homer makes reference
to these gates in the Odyssey®°, when Penelope herself is
trying to decide whether her dream about her husband’s

return to Ithaca is but a false vision.

In any event, Keras is a modular library that enables us to
put together deep neural networks using a high-level syntax
making it ideal for our purposes. In this particular case we
are going to make reference to the TensorFlow backend, but
other options are possible as we mentioned above. Keras
lets the user build sequential networks, i.e., where the

flow of information moves forward in a linear way as we
have described in the previous sections. Similarly, it also
lets us construct graph-based networks with the help of a
functional APIL. With it we can let inputs “jump” to specific
layers and obtain more complex network architectures as a

result.

For us to be able to use Keras with TensorFlow, we will
need to make appropriate installations in our machines.
We are assuming that we are working with Anaconda and
creating a conda environment is probably the best option.

You can try something like this:

> conda create -n tfenv pandas scikit-learn

jupyter matplotlib

Remember to activate your environment (in this case called

tfenv) every time you need to use Keras:

* Fagles, R. (1997). The Odyssey. A
Penguin Book. Penguin Books

Here, we will use a TensorFlow
backend.

Please make sure you check the
documentation for your own

system requirements.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 257

> conda activate tfenv

(tfenv)
> pip install tensorflow

> pip install keras

You can also consider installing other libraries to make your
workflow better for you. Let us recreate with Keras the
neural network architecture we built in Section 4.3.4. We
will use the sequential API to create a layer-by-layer model

and as usual we will import some useful libraries first:

import pandas as pd

import tensorflow as tf

import keras

from keras.utils import np_utils

from keras.model import Sequential

We know why we require the first three import statements;
as for the fourth one, we will use this to wrangle our data
so that we can make appropriate type transformations to be
used with Keras. The last import statement enables us to

use the sequential API in Keras.

We instantiate a sequential model as follows:

model = keras.Sequential()

Now that we have an instance of our model, we can proceed
to the creation of each of the layers in our network. Keras

offers different types of layers and one of the most common

We are assuming the use of conda.
Other virtual environments can

also be used.

We will be using the sequential
APL

We need to instantiate our model.

258 J. ROGEL-SALAZAR

is the dense layer. It is a layer where all the nodes have
edges to the previous layer. We need to provide the number
of units (i.e., nodes) that this layer must have. Since this is
our first hidden layer, we pass an argument to tell it how
many nodes are in the input layer. We can do this with a
shape tuple called input_shape, or for layers such as dense
ones we can use a parameter called input_dim. We also
need to specify the activation function that will be used at
this point of the neural network architecture. This is how we
do this:

hnodes = 3
hidden_layer = keras.layers.Dense(hnodes,

input_dim=2, activation='tanh’)

In this case we are creating a hidden layer with 3 hidden
nodes, the input layer has 2 entries and the activation

function is the hyperbolic tangent. We can see how easy it

would be to change the number of hidden nodes in this case.

Notice that we did not have to declare explicitly the
existence of an input layer. We simply provide information

about its shape or dimensions.

The next layer in our architecture is the output layer, so let

us declare it in Keras:

output_layer = keras.layers.Dense(2,

activation='softmax’)

In this case we have an output layer with two nodes and
the activation function applied is a softmax function. Notice

that we do not have to declare explicitly the shape of the

A dense layer is a fully connected

layer.

Our hidden layer.

This is only possible for Sequential

models.

And our output layer.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 259

input received by this layer. It is implied by the sequencing

of layers once we “stitch” them together. Let us do that:

model.add(hidden_layer)
model.add (output_layer)

We simply use the add method of the sequential model to
add the layers in the order they go in the architecture.

We need to decide on the optimisation algorithm that we are
going to use in our neural network. Keras offers a variety of
them including stochastic gradient descent (SGD), Adagrad,
RMSprop or Adaptive Moment Estimation (Adam)?* . In

this case we will use SGD:

sgd = keras.optimizers.SGD(lr=0.01,
decay=1le-6, momentum=0.9,

nesterov=True)

where 1r is the learning rate, decay applies a decay to the

learning rate over each update:

1
Ir:=1 ; .
r t (1 + decay * iterations) ’ (439)

momentum is a parameter that encourages the algorithm
to move in the direction of descent and is related to the

velocity of descent:
v := momentum*m — 1r *x g,

(4-40)

where m is the previous weight update and g is the current

gradient with respect to parameter p. We can use this

Remember that the order in which

you add the layers is important.

** Kingma, D. P. and]. Ba (2014).
Adam: A method for stochastic
optimization. arxXiv:1412.6980.
Comment: Published as a
conference paper at the 3rd
International Conference for
Learning Representations, San
Diego, 2015

The learning rate related to
the decay and the number of

iterations.

The momentum is related to the
velocity of descent.

260 J. ROGEL-SALAZAR

velocity to calculate the new value of p:

p+ v, if nesterov == False,
Prnew = . (4-41)
p + momentum * v — 1r x g otherwise.
If you are interested in reading more about Nesterov
momentum, take a look at the paper by Sutskever et al.**

where a good description of initialisation and momentum is

presented.

We now need to compile our model, this step configures the
learning process for our neural network architecture. We
need to provide three arguments to the compile method:
The optimisation algorithm to be used, the loss function to

be optimised and a list of metrics:

model.compile(optimizer=sqgd,
loss='"categorical_crossentropy’,

metrics=['accuracy’])

In this case we are using the stochastic gradient descent
algorithm we instantiated above; the loss function is for
categorical cross-entropy as we are trying to distinguish

between two classes.

We are finally in a position to start the learning process with
the aid of the fit method, but before we do that let us make
a couple of manipulations to the input data. Remember that

we read our data from a Pandas dataframe as follows:

df = pd.read_csv(’'neuralnet_dataset.csv’)
df[['x1’, "x2']1].values
df[’'label’].values

X

y

2 Sutskever, 1.,]. Martens, G. Dahl,
and G. Hinton (2013, 17-19

Jun). On the importance of
initialization and momentum in
deep learning. In S. Dasgupta and
D. McAllester (Eds.), Proceedings
of the 3oth International Conference
on Machine Learning, Volume 28

of Proceedings of Machine Learning
Research, Atlanta, Georgia, USA,
pp- 1139-1147. PMLR

We compile our model to use

stochastic gradient descent.

We use Pandas to read our data.

Other methods can also be used.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 261

Keras 1-hidden Layer Neural Network

We will convert the labels in the y vector into a binary class
matrix to be used with the categorical cross-entropy cost

function:

y = np_utils.to_categorical(y)

and now we fit our model:

model.fit(X, y, batch_size=100, epochs=5000,

verbose=0)

Notice that we can change the batch size and the number
of epochs directly in the fit method. You can see how
the learning progresses with verbose=1. The result of our

learning process can be seen in Figure 4.13.

Figure 4.13: Classification
boundary obtained with a
sequential model for a neural
network implemented in Keras.

We convert the target labels into

categorical variables.

And finally, we train our model.

262 J. ROGEL-SALAZAR

We can look at a summary of the architecture we just

created as follows:

> model.summary()

Layer (type) Output Shape Param #
dense_1 (Dense) (None, 3) 9
dense_2 (Dense) (None, 2) 8

Total params: 17
Trainable params: 17

Non-trainable params: 0

As we can see, there are 2 dense layers, one with 3 nodes

and one with 2. There are thus 17 parameters that need to

be fitted in this model and we can see the weights obtained

with the get_weights method:

> model.get_weights()

[array([[2.1810133 , -2.1321995 , -2.4240587 1],
[-0.41597274, -1.8568848 , 1.0889707 11,

dtype=float32),

array([1.0000919, 1.4230473, 3.3605928],
dtype=float32),

array([[-3.8464072, 3.5489938],

3.7599623],

[4.5513706, -4.011438]], dtype=float32),

array([-0.8270238 ,

[-3.4979208,

0.82702374], dtype=float32)]

We can see the layers created and

the number of parameters to learn.

The weights are readily available
to us. Beware their numbers for

deep networks.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 263

Please note that the weights you obtain in your machine

may vary from the ones shown above, after all we are

relying on different starting points. Finally, remember that

you should apply best practices in your work by splitting Remember to apply best practices,

your data into training and testing. You can also apply and split your data into training

and testing datasets.
cross-validation while finding the best hyperparameters for

your model.

We can see how the use of a high-level framework like Keras
enables us to implement neural network architectures in an
easy and friendly way. This opens up the opportunities to
build more complex networks such as convolutional and

recurrent neural networks. Let us take a look.

4.4.1 Convolutional Neural Networks

A CONVOLUTIONAL NEURAL NETWORK IS a type of

artificial neutral network that relies on convolution to learn CNN for short. Not to be confused
patterns in the training data provided. The architecture with ~ with a certain news organisation!
input, hidden and output layers is the same as we have

discussed above. The main difference is the fact that the

hidden layers use more than a simple activation function;

they also convolve their input with a filter or kernel.

Convolutional neural networks (CNNs) have been gaining

traction in applications such as image processing and

computer vision for example.

Many image editing tools make use of convolution to apply 4, identity kernel is given by

different filters to a picture. Different kernels result in 00 0
I=]10 1 0
blurring, sharpening or detecting edges in the image. For 0 0 0

example an identity kernel can help scale a picture down,

264 J. ROGEL-SALAZAR

| O

[
[
[]
i

aim
[]
[]
s
[]
[]
L
.

[]
[]
[]
[]
[|
[|
|
B

Figure 4.14: An image of a letter
) . L J (on the left). After applying
while sharper images can result from the application of a an identity kernel the result is a

scaled down version of the image

sharpening kernel such as: (on the right).

F=|-1 5 -1]|. (4-42)

Consider the image of a (pixelated) letter | as shown on
the left-hand side of Figure 4.14. The application of an
identity kernel to this image results in a smaller one. The Convolution requires element-wise

convolution of the original picture with the kernel chosen multiplication of image portions

of the same size as the kernel
requires the element-wise multiplication of a portion of applied.
the image of equal size as the kernel. We then add up all
the product outputs as the result, which we show on the

right-hand side of Figure 4.14.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 265

The application of the filter is done as if we were scanning
the original image, moving the filter by a stride S. Think

of the filter as a torch that is used to illuminate portions of

the image as we move across it, letting us concentrate on Think of the convolution operation
the details highlighted by the torch’s light. In our example as a torch that scans the image to
highlight details.

above, for a stride S = 1 we have that we go from an image
of 11 x 8 to a scaled image of 9 x 6. If you want to avoid

the scaling down, you can apply padding to the image with
zeros. You can determine the size of the final figure with the

following formula:

output_side = 1+ % (input_side + kernel_side+
2(padding)) . (4-43)

Figure 4.15: An image of a
Jackalope icon (on the left). After
applying a sharpening filter, we
Figure 4.15 we can see the result of applying the sharpening ~ ©btain the image on the right.

Let us take a look at a more realistic image manipulation. In

filter of Equation (4.42) to the image of a Jackalope icon.

266 J. ROGEL-SALAZAR

Let us take a look at what is happening with a portion of

the image. Here are is a 5 x 5 patch of the image:

01111
00111

P=10 0111 (4-44)
00111
|00 1 1 1]

The convolution of patch P with the filter F; is given by:

2 21
P®Fs=1| -1 2 1|, (4-45)
-1 2 1

where ® denotes the convolution operation, and the first
element of the result is given by (0)(0) + (1)(—1) + (1)(0)+
(0)(=1) + (0)(5) + (1)(=1) + (0)(0) + (0)(=1) + (1)(0) =

—2.

The same sort of calculation is done for each of the entries
in the given patch. For a color image, we have red, blue,
green and transparency channels and the convolution

has to be done for each layer. The output channel of the
convolution is called a feature map and it encodes the

degree of presence of the feature detected.

Once the convolution is completed, it is possible to apply an
operation to further reduce the size of the image and make

the whole process more manageable. One such operation is

We have chosen a portion
containing an edge, 0 being
blank and 1 black pixels.

This is the result of convolving
a 3 x 3 filter with a 5 x 5 image

portion.

The same operation will have to be

applied to each layer of the image.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 267

pooling: Given an n x n pooling window, we keep only the
maximum value in the window. This is called max-pooling.
Another option could be to obtain the average and this is
called average-pooling. In the example above, max-pooling on

a 2 x 2 window will result in:
) 2 2
max_pooling(P ® Fs) = . (4.46)
2 2

The operations outlined above will need us to sweep the
entire image with our filter. The result is a filtered image

with the resolution given by the formula shown in Equation

(4.43).

So far so good, but... what is the relationship with neural
networks. Well, if we use various filters that detect different
features such as vertical and horizontal edges, curved
features, etc. we can use the results to determine, for
example, the presence of objects. In practice a CNN learns
these feature maps as the training process is executed. A

typical architecture for a CNN is shown in Figure 4.16.

The setup involves the use of one or more convolutional
layers with pooling and a ReLU activation, followed by

a flattening layer. Flattening enables us to convert our

2D matrices into a column vector ready to be used in a
dense layer. Sometimes it is useful to drop a random set of
activations forcing the network to generalise better. These

layers are referred to as dropout layers.

Pooling is a down-sampling
process that reduces the size of

our matrices.

Remember the analogy of using a

torch.

This is useful in computer vision

problems.

Or other activation functions.

268 J. ROGEL-SALAZAR

layers
Input Convolutional Pooling/
layers Dropout
layers

4.4.2 Convolutional Neural Networks in Action

Convolutional ~ Pooling/
layers Dropout
layers

Convolutional ~ Pooling/ output
layers ~ Dropout Flattening layer

layer

Figure 4.16: Architecture of a
convolutional neural network.

LET US CREATE A NEURAL network classifier for images

based on the CIFAR-10 dataset®3. The dataset contains Krizhevsky, A. (2009). Learning
. multiple layers of features from
60,000 images with 32 x 32 resolution. They are divided tiny images. Technical report

into 10 balanced classes. The dataset is split into 50,000

training images and 10,000 testing ones. The ten classes in

the dataset are: Airplane, automobile, bird, cat, deer, dog,

frog, horse, ship and truck. An example for each of the

classes is shown in Figure 4.17. Let us define a list with the

classes:
class_names = "airplane’, 'automobile’, 'bird’ . -
[P ! ! ! We will use this list to make
"cat’,’'deer’,'dog’, ’'frog’, "horse’,’ship’, human-readable predictions later

"truck’]

on.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 269

airplane automobile
- —

dog frog

The dataset is included with Keras and can be imported as

follows:

from keras.datasets import cifarl0

(X_tr, y_tr), (X_tst, y_tst) = cifarl0.load_data()

The images are now given by integer numpy arrays. In
order to ensure their correct manipulation, we will

normalise our data. First we will cast the arrays as float.

X_train = X_tr.astype(’'float32’)
X_test = X_tst.astype(’'float32’)

We will then calculate a mean and standard deviation and

apply it to the data:

Figure 4.17: Example images

for each of the ten classes in the
CIFAR-10 dataset. The pixelation
is the result of the images being
32 x 32.

Please note that the data will need
to be downloaded the first time
you use the dataset. This may take

some time.

270 J. ROGEL-SALAZAR

mean = np.mean(X_train,axis=(0,1,2,3))
std = np.std(X_train,axis=(0,1,2,3))
X_train = (X_train-mean)/(std+le-7)

X_test = (X_test-mean)/(std+le-7)

In order to use categorical cross-entropy as our loss function,
we will use one-hot encoding to get suitable classes for our
task. We will have to specify the number of classes in our
dataset so that we have the appropriate number of nodes in

the output layer:

from keras.utils import np_utils
y_train = np_utils.to_categorical(y_tr)
y_test = np_utils.to_categorical(y_tst)

num_classes = y_train.shape[l]

We are going to build our convolutional neural network
using the Keras functional API. Let us import some useful

libraries first:

import numpy as np

import keras

from keras.models import Model

from keras.layers import Dense, Activation,\
Flatten, Dropout, BatchNormalization, Input

from keras.layers import Conv2D, MaxPooling2D

from keras import regularizers

from keras.callbacks import LearningRateScheduler

from keras.preprocessing.image import\

ImageDataGenerator

We obtain the mean and standard

deviation to normalise our data.

In this way we ensure the labels

are categorical variables.

We import a number of useful

libraries from Keras.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 271

We can see some familiar words such as Dense and Flatten.
As for others, they tend to do what they describe:
Convolutional layers can be defined with Conv2D and
max-pooling can be achieved with MaxPooling2D. For others

we will provide explanations as we use them.

When using the functional API, we must define an input
layer explicitly with a shape argument determining the
dimensionality of the training data. In this case we have

images of size 32 x 32 x 3.

model_input = Input(shape=(32, 32, 3))

The layers are connected pairwise and the connection
specifies the source of the input as given by the arrangement
in our architecture. We explicitly name the inputting layer in
parentheses after the desired connecting layer. It is easier
when we see it; let us create a first convolutional layer

taking input from model_input defined above:

weight_decay=1le-4

convl = Conv2D(32, kernel_size=(3, 3),\
activation="relu’, padding='same’,\
kernel_regularizer=\

regularizers.12(weight_decay)) (model_input)

Our convolutional layer takes first the number of filters

to be learnt. This represents the dimensionality of the
output space for the layer. In this case we request 32 filters.
kernel_size specifies the window size for the convolution.
The activation function applied to the layer is specified with

activation and in this case we are using a ReLU function.

Conv2D implements a

convolutional layer.

Remember that we have 3

channels in the images.

We explicitly name the inputting

layer in parenthesis.

The kernel_size is a tuple
defining height and width of

the window.

272 J. ROGEL-SALAZAR

It is possible to apply padding; here we request for the
output to be the same size as the input. We also apply a
penalty to the parameters of this layer, in this case an L2
penalty with a weight decay of 1 x 10~*. Finally, we can
see that model_input is the input for this convolutional
layer. The next step in our architecture is the application
of a normalisation®4 transformation maintaining the mean

activation close to 0 and its standard deviation near 1.

batchnl = BatchNormalization() (convl)

We apply another combination of a convolution layer and

batch normalisation:

conv2 = Conv2D(32, (3, 3), activation='relu’,\
padding='same’, kernel_regularizer\
= reqularizers.12(weight_decay)) (batchnl)

batchn2 = BatchNormalization() (conv2)

Our next layer is a pooling layer. MaxPooling2D takes an

argument defining the pooling window size:

pooll = MaxPooling2D(pool_size=(2,2)) (batchn2)

As we can see, the input for this layer is given by the
batchn2 layer. In order to help with generalisation, we will

now set a random fraction of the input units to 0:

dropl = Dropout(0.2) (pooll)

We are getting the hang of this. We will add a few more

convolution layers together with batch normalisation,

Other padding options include
valid and casual.

2 Joffe, S. and C. Szegedy (2015).
Batch normalization: Accelerating
deep network training by
reducing internal covariate shift.
CoRR abs/1502.03167

We can easily add more layers to

our architecture.

In this case we drop out 20%.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 273

pooling and dropout. Here, we will be requesting 64 filters
in each of the next two convolution layers, followed by two
more with 128 filters, with dropouts of 30% and 40%,

respectively:

conv3 = Conv2D(64, (3, 3), activation='relu’,\
padding='same’, kernel_regularizer\
=regularizers.12(weight_decay)) (dropl)

batchn3 = BatchNormalization() (conv3)

conv4d = Conv2D(64, (3, 3), activation='relu’,\
padding='same’, kernel_regularizer=\
regularizers.12(weight_decay)) (batchn3)

batchn4 = BatchNormalization() (conv4)

pool2 = MaxPooling2D(pool_size=(2,2)) (batchn4)

drop2 = Dropout(0.3) (pool2)

convb

Conv2D (128, (3, 3), activation='relu’,\
padding='same’, kernel_regularizer=\
regularizers.12(weight_decay)) (drop2)

batchn5 = BatchNormalization() (conv5)

convé = Conv2D(128, (3, 3), activation='relu’,\
padding='same’, kernel_regularizer=\
regularizers.12(weight_decay)) (batchn5)

batchn6é = BatchNormalization() (conv6)

pool3 = MaxPooling2D(pool_size=(2,2)) (batchnb6)

drop3 = Dropout(0.4) (pool3)

We can add as many convolutional layers as we desire, and
remember that as you add more, the number of parameters
to be fitted grows too. Let us flatten the input up until now,

and add a dense layer.

We are adding layer upon layer
to our convolutional neural
network: Convolutional, batch
normalisation and pooling, one

after the next.

274 J. ROGEL-SALAZAR

flat = Flatten() (drop3)

densel = Dense(num_classes,\

activation='softmax’) (flat)

Note that the output layer has num_classes=10 nodes, one

for each class in our training data and the activation

function is a softmax function. We can see the final version

of our architecture with the summary:

> model.summary()

Layer (type) Output Shape Param #
input_1 (InputLayer) (None, 32, 32, 3) 0
conv2d_1 (Conv2D) (None, 32, 32, 32) 896
batch_normalization_1 (None, 32, 32, 32) 128
conv2d_2 (Conv2D) (None, 32, 32, 32) 9248
batch_normalization_2 (None, 32, 32, 32) 128
max_pooling2d_1 (Max (None, 16, 16, 32) ©
dropout_1 (Dropout) (None, 16, 16, 32) ©
conv2d_3 (Conv2D) (None, 16, 16, 64) 18496
batch_normalization_3 (None, 16, 16, 64) 256
conv2d_4 (Conv2D) (None, 16, 16, 64) 36928
batch_normalization_4 (None, 16, 16, 64) 256
max_pooling2d_2 (MaxP (None, 8, 8, 64) 0
dropout_2 (Dropout) (None, 8, 8, 64) 0
conv2d_5 (Conv2D) (None, 8, 8, 128) 73856
batch_normalization_5 (None, 8, 8, 128) 512
conv2d_6 (Conv2D) (None, 8, 8, 128) 147584
batch_normalization_6 (None, 8, 8, 128) 512

Finally, we connect to a dense

output layer.

We can see the different layers
in our CNN, and the number of

parameters to learn.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 275

max_pooling2d_3 (MaxP (None, 4, 4, 128) 0
dropout_3 (Dropout) (None, 4, 4, 128) 0
flatten_1 (Flatten) (None, 2048) 0

dense_1 (Dense) (None, 10) 20490

Total params: 309,290
Trainable params: 308,394

Non-trainable params: 896

This model has a total of 309,290 parameters, of which we
need to train 308,394. Let us now compile our model. We

define a batch size of 64 and use an RMS optimiser:

batch_size = 64

opt_rms = keras.optimizers.rmsprop(lr=0.001,\
decay=1le-6)

model.compile(loss='categorical_crossentropy’,\

optimizer=opt_rms, metrics=['accuracy’])

We can define a schedule for the learning rate: As the

number of epochs increases, our learning rate gets smaller.

def 1lr_shedule(epoch):
if epoch>100:
lrate = 0.0003
elif 75 < epoch <= 100:
lrate = 0.0005
else:
lrate = 0.001

return lrate

In this case we have 308,394

parameters to train.

Do not forget to compile the

model before training.

As training goes on, we make our

learning rate smaller.

276 J. ROGEL-SALAZAR

We will also use Keras to augment our data by making
transformations to the inputs, we will use the
ImageDataGenerator function to create modifications
enabling for rotation of the image, height and width shifts

and even horizontal flips:

datagen = ImageDataGenerator(
rotation_range=15, width_shift_range=0.1,

height_shift_range=0.1, horizontal_flip=True)

datagen.fit(X_train)

We are ready to fit our model: Keras enables us to fit the
model on batches with real-time data augmentation through
the fit_generator method for the model, and the flow

method for the data augmentation.

model.fit_generator(datagen.flow(X_train, y_train,
batch_size=batch_size), steps_per_epoch=\
X_train.shape[0]//batch_size, epochs=125,
verbose=1, validation_data=(X_test, y_test),

callbacks=[LearningRateScheduler(lr_schedule)])

We can evaluate the model on the test data as follows:

> scores = model.evaluate(X_test, y_ test,\
batch_size=128, verbose=1)

> print(’Evaluation result: {0:.2f}, Loss:\
{1:.2f}’.format(scores[1]*100, scores[0]))

Evaluation result: 88.45, Loss: 0.47

With ImageDataGenerator we can
augment our images by applying

transformations.

Please note that this step may take
several hours, depending on the

computer architecture you use.

Evaluating our model is very easy.

ADVANCED DATA SCIENCE AND

Let us pick 10 images at random to create predictions for

them.

import random

ixs = [1

for 1 in range(10):
ix = random.randint (0, X_test.shape[0])
ixs.append(ix)

sub_X_test[i] = X_test[ix]

First let us look at the indices of the pictures:

> print(ixs)

[8804, 4028, 7066, 5241, 1648,
8330, 1202, 2210, 2055, 2153]

For the pictures chosen randomly, the prediction can be

calculated as:

> mypred = np.argmax(model.predict(sub_X test), 1)

> print([class_names[x] for x in mypred])

["frog’, 'airplane’, 'frog’', ’'deer’,

"ship’, 'dog’, 'bird’, ’'bird’, ’'dog’, ’'ship’]

The actual labels can be retrieved as follows:

> print([class_names[y_tst[i][0]] for i in ixs])

['frog’, 'airplane’, 'frog’, 'deer’,

'ship’, ’'dog’, 'bird’, ’bird’, ’'dog’, ’'ship’]

ANALYTICS WITH PYTHON 277

Using the good old random
package.

In case you want to check the

labels predicted...

We are able to compare the labels
predicted with the actual ones.
You may want to use something

like a confusion matrix instead.

278 J. ROGEL-SALAZAR

Finally, let us make a prediction with a totally new image.
Let us try the picture shown in Figure 4.18 saved into a file
called picbo001. jpg. First we will need to read the image

and ensure that it has the right dimensions:

import matplotlib.image as mpimg

from skimage.transform import resize

img=mpimg.imread(’'picbo001l.jpg’)
img_resized = resize(img, (32, 32),\

anti_aliasing=True)

You can also make predictions for

images not in the dataset!

In this case, the resized image has values between 0 and 1.
We will therefore multiply the image by 255 to apply the

normalisation used for the training images:

Figure 4.18: A picture of a
nice feline friend to test our
convolutional neural network.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 279

img_resized = (img_resized*255-mean)/(std+le-7)
proc_img = img_resized.reshape((1l,) +\

img_resized.shape)

The last step is needed so that the image has dimensions
(1,32,32,3) as expected by the model. Finally we can make

our prediction: Indeed, the convolutional neural

network can see our feline friend

it!
> pr = model.predict(proc_img) and tell us about it!

> pr_label = np.argmax(pr, axis=1)[0]
> print(’'The image has a {0}'.format(\

class_names[pr_label]))

The image has a cat

Et voila, we have an image classifier from a convolutional

neural network ready to be used.

4.4.3 Recurrent Neural Networks

MEMORY IS AN IMPORTANT FUNCTION that our brains
enable us to perform. We are not pretending to explain here
what memory is or is not, or even what it is for. I

recommend reading A. Glenberg’s paper on the subject

instead?>. If we think of memory as the function to encode, % Glenberg, A.M. (1997). What
. . . memory is for. Behav. Brain Sci. 20,
store and subsequently retrieve information, we would 155

expect that, given the inspiration, an artificial neural
network may be able to support a similar ability. So far, that
has not been the case. The neural networks we have

discussed pass information forwards and backwards but at

280 J. ROGEL-SALAZAR

no point we have mentioned anything about retaining any
memories. Carrying memories forwards is a helpful thing,
as the Queen of Hearts® would remark , “It’s a poor sort of

memory that only works backward.”

The premise of a recurrent neural network architecture is
such that we require it to remember previous inputs to be
used in subsequent steps of the training. Up until now we
have made the assumption that all inputs are independent
of each other. However, there are certain tasks where this is
not necessarily true. Think for example of applications
where the past history is important in the prediction, such
as in the time series we discussed in Chapter 1, or for
example in speech recognition, language translation or
image captioning. Remembering what the inputs that came
before the current time provide important information to

the network.

Performing the same task for every element of a sequence
of inputs makes the task recurrent and hence the name of
this type of neural networks. The output, as explained
above, is dependent on the previous calculations carried

out by the network and therefore having the equivalent of a

memory function that captures that information is important.

Consider a section A of a neural network that receives an
input X;. The output of this section is a value y; as shown
in Figure 4.19. In a recurrent neural network we enable a

loop that lets us pass the information from one portion of
the network to the next. We can think of this loop in an

unfolded way as shown in the right-hand-side of Figure

4.19.

26 Carroll, L. and J. Tenniel (1897).
Through the Looking Glass: And
what Alice Found There. Altemus’
illustrated young people’s library.
Henry Altemus Company

And outputs for that matter...

RNN for short.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 281

-4 o OG0T 80

The unfolded version of the recurrent neural network lets
us clearly see the importance of the sequence of inputs

and outputs during training. We have already mentioned
some of the applications where RNNs have become the
norm. A particular architecture that is widely used is the
so-called long short-term memory or LSTM proposed in 1997
by Hochreiter and Schmidhuber?7, with several adjustments
added in subsequent years. Before we get to see how LSTM
works, let us highlight some of the differences between

RNNs and the neural network architectures we have seen.

Let us consider the task of predicting what the next word in
a sentence is. We can choose a large corpus as our training
data, think for example of a book such as Erewhon, or Over
the Range 28 by Samuel Butler. First published in 1872, the
book tells us about the adventures our narrator experiences
in the eponymous country he discovers. Upon arrival on the
land, the protagonist learns that, 500 years prior,
Erewhonians were made aware of the danger of
technological revolt, banning the use of anything but the
most primitive machines. The decision is explained in a

manifesto called The Book of the Machines. This is the literary

Figure 4.19: A diagrammatic
representation of the architecture
of a recurrent neural network.

27 Hochreiter, S. and Schmidhuber,
J. (1997). Long short-term memory.
Neural. Comput. 9(8), 1735-1780

Indeed a sentence is a sequence of

words.

Butler, S. (2005). Erewhon; Or,

Over the Range. Project Gutenberg
https:/ /www.gutenberg.org/ebooks/1906.
Accessed: 2019-09-03

https://www.gutenberg.org

282 J. ROGEL-SALAZAR

mechanism that Butler uses to raise the possibility of

conscious machines by Darwinian selection.

But we digress... After training our neural network with the

text from Erewhon, if we input the sequence:

“There is no security”’— to quote his own words— “against the

ultimate development of mechanical ...

we would expect a reasonable word to follow, based on the
training text provided. During training, we will take each
word at a time and produce a result as in the feedforward
neural networks we know and love. However, in this case
we also need to be aware of the previous inputs that have
been provided before we look at the result. This is what
we are doing in the unfolded version of the RNN shown
in Figure 4.19 where each Xy, X1, X», ..., X; corresponds

to the input words from the corpus. In turn, we produce
the predicted follow-up word yo, y1,Y2, - . .,y:, and we hold
in memory the information hg, hy, hy, ..., h;_1 about the

previous words.

In order to make the most out of our recurrent neural
network architecture, we will need to consider using
something like word embeddings to help us map words to
vectors, for instance with the help of Word2Vec®®. In this
case, to make the explanation simpler we consider a
simplistic approach such as one-hot encoding to obtain
vectors with dimension (V,1) where V is the number of
words in the vocabulary. The values of the vectors are all
zeros, except for a 1 at the position that corresponds to the

entry in our dictionary of words. So if the vocabulary has

The title of the novel is the word
“Nowhere” spelt backwards,
with the letters “w” and “h”

transposed.

Refer to the unfolded version of

our RNN shown in Figure 4.19.

29 Mikolov, T., I. Sutskever, et al.
(2013). Distributed Representations
of Words and Phrases and Their
Compositionality. In Proceedings
of the 26th International Conference
on Neural Information Processing
Systems - Volume 2, NIPS’13, USA,
pp- 3111-3119. Curran Associates
Inc

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 283

three words: [aardvark, iberian_lynx, zebra], the vector

for iberian_lynx will be [0,1,0].

Back to Erewhon, let us imagine that we would like to use
the RNN in Figure 4.19 to predict the next word in the
proposed sequence. The network applies a recurrence
formula in A to the input vector as well as to its previous
state. For the first word (There) there is nothing before it, so
nothing to remember. When we move to the next word (is)
the network applies the recurrence formula to it and takes
the previous state into consideration, i.e., the word There.
The two words are used to calculate a new state, which will
be fed back to the network in the next time step. We say that
at time f the input is is, at time ¢ — 1 the input was There. We

continue like this for the rest of the inputs, one at a time.

We can think of the current state of the network to be given
by a combination (via an activation function) of the previous

state and the input vector as the current time step:

he ~ f(hi—1, Xt), (4-47)

where f is the activation function. From our discussions
about the training of feedforward neural nets, we have seen
that the weights associated with each of the nodes are the
parameters we need to fit. We therefore need to take them
into account here too. Let us denote the weight at the input
node as W,y, and the weight at the current node as Wy, the

state at time t will then be given by:

he = c(Wyphi—1 + Wi Xt). (4-48)

RNNS apply a recurrence formula
to the input vector as well as to its
previous state. This latter is the
memory we want the network to

retain.

Not only the input and previous
states, but we also need the

weights.

284 J. ROGEL-SALAZAR

where we are applying a softmax activation function. In this
case the memory of the network is only of the immediate
previous step. We can say that it has a short memory.

Remembering more steps will require appropriate storage.

With this state we can calculate the output at time ¢ as

yt = Wyyhs. At this point, if this is the final output of the
network, we can use backpropagation to enable us to
update the weights as we have done before. In the case of
our sample sentence, after obtaining the optimal weights,
we input each of the words in the sequence, the RNN will

produce (hy,hy,h3, ..., hi5) and we calculate y14 using hys

and X4 (the one-hot encoded vector of the word mechanical).

A successful training will give us a vector y1¢ corresponding
to the word consciousness, which would have been the

correct prediction.

The main difference between RNNSs and the other neural

nets we have discussed is the application of the feedback

loop connecting the present state to the past decisions made.

This is what we refer to as memory in the context of neural
networks and its main goal is to exploit the information

contained in the sequence of inputs.

We mentioned above the application of backpropagation in
a recurrent neural network. In this case we need to
backpropagate through time (BPTT). We treat the full
sequence (in this case the sentence) as a single training
sample; the error is given by the sum of errors at each time

step (each word). So for the total error E we have that:

Remembering more steps requires

more storage.

The application of
backpropagation still stands

for recurrent neural networks.

The feedback loop is the
distinguishing feature of RNNs.

In this case, backpropagation is
actually backpropagation through

time.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 285

JoE oE;
W ;mr (4-49)

As before we can apply the chain rule and as we can see
from the unrolled version of the RNN, the gradient needs to
be calculated for each time step with respect to the weight

parameter. For example for Es we have that:

9Es _ 9E50y5 9fs
W 975 9fs IW’ (4-50)

where f5 is the activation function at this time step. In
turn, this activation function depends on W and f4, which
depends on f3, and so on. With the weight being the same
for all the time steps in one single pass, we can combine

all the gradients so long as we express the calculations
with a well-defined, ordered sequence of calculations. It is
sometimes preferred to use a truncated BPTT approach as
the cost and time of going back over many time steps can be

quite high.

It is clear now that recurrent neural nets get their predictive
power from the dependency on previous time steps.
However, they may have some trouble remembering over
long time dependencies. If the memory is only over one
time step, a recurrent neural network may have trouble with

a sentence such as:

The knight fleeing from the Jackalope is a coward,

where the description of being a coward is for the knight

and not for the Jackalope. The issue is not just one of

The chain rule still rules for BPTT.

Not dissimilar to a lot of us

humans anyway!

This must be the Jackalope of

Caerbannog of course!

286 J. ROGEL-SALAZAR

interval length. As we propagate forward in the network, if
we were to encounter a gradient that is smaller than 1 and
we multiply it by a suitably small learning rate, the values
becomes ever smaller. We then use this information to
propagate the errors back through time making the problem
bigger. This leads to an issue with recurrent neural
networks called the vanishing gradient problem where the
network has problems remembering information from far
away in the sequence, making predictions based only on the

most recent time steps.

Conversely, we can experience exploding gradient issues
where the gradient values become increasingly large
assigning undue importance to certain weights for no good
reason. Exploding gradients can be successfully managed by
imposing a threshold on the gradients for example. Another
option is the truncated BPTT we mentioned above. In
comparison, vanishing gradients are more concerning and

they can be dealt with by using architectures such as LSTM.

4.4.4 Long Short-Term Memory

A LONG SHORT-TERM MEMORY NEURAL nhet is a type of
RNN able to remember over longer-term dependencies. The
chain of repeating modules we have described above still
holds true in an LSTM. However, the inner workings of

the module A shown in Figure 4.19 is no longer the simple
application of an activation function such as a ReLU or a

hyperbolic tangent.

Vanishing gradients indicate issues

with remembering long sequences.

Whereas exploding gradients
assign undue importance to

certain weights.

Long short-term memory, or
LSTM for short.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 287

Vi+1

tanh

Oy

r
S

q

\ J
—

Output
gate

Instead, each module of the LSTM has 3 gates, namely the
Forget Gate, the Input and the Output Gates. These are
shown in Figure 4.20, and we will consider each of them

in turn. The main cell state of the LSTM is the horizontal
line that runs straight through the top of the diagram. The
architecture of the network relies on the addition or removal
of information to this cell state through the gates mentioned

above.

For example, in the Forget Gate we have a sigmoid neural
network layer (the box marked with S) followed by a
pointwise multiplication operation (the circle marked with
X). This lets us decide what information is allowed to pass to
the cell state. It takes information form the previous state
hi—1 and the input X; generating a value between 0 and 1

for each cell state C;_1. The output g; of this gate can be

Figure 4.20: The inner workings of
a long short-term memory neural
network.

Refer to the Forget, Input and
Output Gates in Figure 4.20.

288 J. ROGEL-SALAZAR

expressed as:

gt =8 (Wyg- [, X¢] +bg) . (4.51)

If the value generated is a 0, it indicates that the information
will be forgotten, whereas a 1 will enable the information to
be remembered. In short, the Forget Gate lets us decide how

much past information we should remember

The next stage in the process is the Input Gate where we are
able to decide the amount of information that this module
will add to the current cell state. In other words, if the
Forget Gate enables us to forget information of the past
state, this gate lets us decide what to remember in this cell
state. The Input Gate has two stages, first a sigmoid layer
that picks what values will be updated:

it =S (W[, Xs] +b;). (4.52)

Then we have a hyperbolic tangent layer that proposes new

potential cell state values C;:

Cr = tanh (We - [1p-1, X¢] + bc) - (4-53)

The outputs of the two layers are then combined (circle
marked with X in Figure 4.20 inside the Input Gate
boundary), which will be used to update the state given by

the top horizontal line in our diagram.

Also called Update Gate as we

shall see.

Remember the 0s and 1s thrown
by a sigmoid function.

The importance of values is
modulated by the [—1, 1] output of
the hyperbolic tangent.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 289

We need to update the old cell state C;_;. In reality all the
decisions have already been made in the previous stages
we just need to apply the calculations. First we multiply the
output of the Forget Gate g; with the previous state C;_1,
forgetting parts of the old state. We then add the result to
the filtered candidate values C; from the Input Gate (in the

top horizontal line in the diagram)

Ct = g:Ci_1 +iC. (4-54)

We are now at the Output Gate of our module, where we
decide the portion of the current cell that will make it to the

output. We apply a sigmoid layer for this purpose:

or =S (Wo - [he—1, Xi] + bo) - (4.55)

At the same time we put the cell state obtained from the
previous stages C; through a hyperbolic tangent layer to
map the values between —1 and 1 and combine the outputs
filtering out the portions of the cell state we want to output,

i.e., hti

hy = o; tanh(Cy). (4-56)
The description presented above covers the main
components in an LSTM. There are other variations such as
the Gated Recurrent Unit (GRU)3° which combines the
Forget and Input Gates into a single unit. It also merges the
cell state and hidden state resulting in simpler inner

architecture.

At the circle marked with + in

Figure 4.20.

That is why we also call it the
Update Gate.

And finally, to the Output Gate.

3°Cho, K., B. van Merrienboer,
et al. (2014). Learning
phrase representations using
RNN encoder-decoder for
statistical machine translation.
CoRR abs/1406.1078

2900 J. ROGEL-SALAZAR

If you are interested in a comparison of different LSTM
architectures, take a look at “LSTM: A Search Space
Odyssey”3" were the authors present such comparison.
They find that different LSTM architectures perform more or
less the same as standard LSTM. They show that the Forget
Gate and the output activation function are the most critical

components.

4.4.5 Long Short-Term Memory Networks in Action

LET US CREATE A NEURAL network that is able to generate a
plausible sequence given a set of training data. We will use
a character-level language model. This means that we will
give our LSTM recurrent neural network a number of
character sequences and request for the probability
distribution of the next character in the sequence. We can
use the model to generate new sequences (hopefully
coherent sentences) one character at a time. An interesting
blog entry called The Unreasonable Effectiveness of Recurrent
Neural Networks3> covers this same challenge including

different types of corpora.

Our starting point requires us to get hold of a large piece of
text. We will use the text mentioned in Section 4.4.3, i.e., the
1872 fiction novel Erewhon, or Over the Range33 by Samuel

Butler. The text can be found in the Project Gutenberg site.

After downloading the text in UTF-8 format and it is saved
in a plain file called erewhon.txt we can start our journey

over the range. As usual we start by loading some libraries:

3t Greff, K., Srivastava, R. K.,
Koutnik, J., et al. (2017). LSTM:
A Search Space Odyssey. IEEE
Trans. Neural Netw. and Learning
Sys. 28(10), 2222—2232

This kind of models is called

generative... for obvious reasons.

3 Karpathy, A. (2015). The

Unreasonable Effectiveness of

Recurrent Neural Networks.

https:/ /karpathy.github.io/2015/05/21/rnn-
effectiveness/. Accessed:

2019-09-09

33 Butler, S. (2005). Erewhon; Or,

Over the Range. Project Gutenberg
https:/ /www.gutenberg.org/ebooks /1906.
Accessed: 2019-09-03

https://karpathy.github.io
https://www.gutenberg.org
https://karpathy.github.io/2015/05/21/rnn-effectiveness/.Accessed:

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 291

import numpy as np
import random
from keras.models import Sequential

We already know how to do this
from keras.layers import Dense

with our eyes closed.
from keras.layers import Dropout
from keras.utils import np_utils
from keras.layers import LSTM

from keras.callbacks import ModelCheckpoint

We are familiar with the calls made above, expect perhaps
for the last two entries. LSTM, however, should be pretty
straightforward after reading the preceding section.
ModelChekpoint helps us request information from our
architecture at desired points, e.g., at the end of every epoch.

Let us load the text:

book = 'erewhon.txt’
with open(book, ’r’) as file: We open and read the file as usual.
text = file.read().lower()

n_text = len(text)

We can see what the length of our corpus is:

> print(’'Book Text Length: {}'.format(n_text))

The number of characters is the

length of our text.

Book Text Length: 483134

We have over 480k characters in the text. We will be
generating text character-by-character and therefore we
require a set of the characters used in the text. It is this set

that becomes our “vocabulary” for this task.

292 J. ROGEL-SALAZAR

chars = sorted(list(set(text)))

n_vocab = len(chars)

We can now ask about the cardinality of the character set

used in the corpus:

> print(’Number of characters used: {} '.\

format(n_vocab))

Number of characters used: 62

There are 62 different characters used, more than the typical
26 characters in the English alphabet. This is because there

are some symbols, punctuation and other characters too:

> print(chars[:5], chars[-5:1])

['\nl, ’ " I!” 'III’ '#I]
'y, 'z, "L, 'Y, \ufeff]

We will need to keep track of the characters used, but not
only that, we will need to pass a numerical representation to
the neural network. To that end, we will create an index for

the characters:

char_ixs = dict((c, i)

for i, c in enumerate(chars))

It may be needed to reverse back the index, so that any

prediction can be traced back to the character in question:

We calculate a set from the

characters in the corpus.

There are 62 entries in the set,
more than the usual 26 letters in
English.

Perhaps an opportunity to pre-

process our data.

We are using a dictionary to create

our vocabulary index. Great!

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 293

ixs_char = dict((i, c) We also need the reverse index.

for i, c in enumerate(chars))

Another important decision that needs to be made is the
length of the training sequences we will feed into the LSTM.
In this case we are going to use a fixed length of 40

characters. Other approaches may include partitioning the

text into sentences and pad them to take into account long You can try other length
and short sentences. sequences.
In order to keep things in check, we will generate sequences
jumping a few characters. We do this with a step of 3.
Finally, the training sequences, along with the next character
in the sequence, will be stored in lists:
seq_len = 40
step = 3 We store the training sequences
in rawX and the next characters in
rawX = [] rawy.
rawy = []

Let us generate the sequences, i.e., sentences, that will be

fed to the neural network:

for i in range(0, len(text) - seqg_len, step):

rawX.append(text[i: i+seq_len])
We append the sequences to the

rawy.append(text[i+seqg_len]) lists above

n_sentences = len(rawX)

294 J. ROGEL-SALAZAR

We can check how many sequences have been generated:

> print(n_sentences)

161032

We have over 160k sentences to train our network. Let us

take a look at one of them:

> print(rawX[900])

machines as an attempt to reduce mr. dar

and the next character in this sequence is:

> print(rawy[900])

We can get a glimpse to the Darwinian references used

by Butler in the description of the Erewhonian machines.
We need to encode these sentences and next characters

to be able to pass them to the neural network. We will
create some Boolean arrays to hold the information. For the
sequences we need an array to hold the number of sentences
(161032) by the length of the sentence (40) by the number of
characters in our vocabulary (62). For the next characters
we only need the number of sentences by the number of

characters:

This is the number of sequences
that will be used to train our

recurrent neural network.

This is sequence 900 in our

dataset.

And this is the next character for

sequence 900.

I 'am no RNN, but surely that
would be a reference to Darwin

himself!

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 295

X = np.zeros((len(rawX), seqg_len, len(chars)),
dtype=np.bool)

y = np.zeros((len(rawy), len(chars)),
dtype=np.bool)

Each character in each sentence can now be encoded with

the help of the index we created earlier on:

for i, sentence in enumerate(rawX):
for t, char in enumerate(sentence):

X[i, t, char_ixs[char]] =1

y[i, char_ixs[rawy[i]]]=1

We have completed our data processing and we are ready
to define the architecture of our LSTM neural network. We
will use the sequential API and try to keep the architecture

simple at this stage:

model = Sequential()

model.add(LSTM(128, input_shape=(seq_len,
len(chars))))

model.add(Dropout(0.2))

model.add(Dense(len(chars), activation='softmax’))

We start with a long short-term memory layer with 128
units expecting an input with dimensions of the length of
the sequence by the number of characters. We then apply a
dropout layer setting 20% of the inputs units to 0. Finally,
we connect this to a dense output later with a softmax

activation function. Let us look at a summary of the model:

Our sequences and next characters
are now transformed into Boolean

arrays.

We use our dictionary to encode
the characters.

We use the sequential API in

Keras for this implementation.

296 J. ROGEL-SALAZAR

> print(model_summary())

Layer (type) Output Shape Param #
lstm_1 (LSTM) (None, 128) 97792
dropout_1 (Dropout) (None, 128) 0
dense_1 (Dense) (None, 62) 7998

Total params: 105,790
Trainable params: 105,790

Non-trainable params: 0

This model requires us to train 105,790 parameters. For that
purpose we need to compile our model while providing an

optimiser and an appropriate loss function:

from keras.optimizers import RMSprop
We need to train 105,790

parameters in this model.

opt = RMSprop(lr=0.01)
model.compile(loss="categorical_crossentropy’,\

optimizer=opt)

We may be interested in a very accurate model that predicts

each character in the text perfectly. That may take a more

intricate architecture and a longer training time. In this case,

we will request the model to provide us with a view of the This model may not be the most

s . . o s . accurate, but then again it is a ver
improvements achieved in the training by recording a model & y

simple one.
to a file whenever this happens at the end of an epoch. This
is why we are interested in the ModelCheckpoint method

introduced earlier on in this section.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 297

We start by defining a file name including information about
the given epoch and loss, we will pass this information to
the model checkpoint and provide this as a list of callbacks

to the model:

fname= ’'weights-improv-{epoch:02d}-{loss:.4f}.hdf5’

checkpoint = ModelCheckpoint(fname,\)
ModelCheckpoint lets us keep

monitor="loss’, verbose=1,\ track of the improvements in the

save_best_only=True, mode='min’) model during training.

We can now start training our model:

model.fit(X, y, epochs=60, batch_size=128,

callbacks=[checkpoint])

We are training the model for 60 epochs with batches of 128
sequences. In the instance when this model was run, the
model did not manage to get any further improvements in
the optimisation of the loss function after the 59" epoch.
The latest file produced by the check point was
weights-improv-59-1.3969.hdf5.

The model obtained can be used to generate some text. But
before we do that, let us make sure that we are able to
obtain appropriate samples out of the probability array. We We need to ensure that we can

will use the fact that we are using a softmax function and obtain appropriate samples out of

a probability array.
apply a “temperature” to control the randomness of the
predictions made. If the network produces class
probabilities with logit vector z = (z1,2p,...,2x) by

applying a softmax function, then we are able to calculate

298 J. ROGEL-SALAZAR

the probability vector q = (q1,42, - .,4n) with g; given by

the following expression:

exp(z;i/T)

q9i = S exp(z/T)’ (4-57)

where T being the temperature parameter. When T = 1,
we are computing the softmax function directly on the
logits without scaling. When T = 0.5 for instance, we are
effectively doubling the logits and therefore we have larger
values of the softmax function. This makes our predictions
more confident but also more conservative. Let us create a

function to calculate the sample:

def sample(p, temperature=1.0):
p = np.asarray(p).astype(’'float64’)

p = p*x(1l/temperature)
p_sum = p.sum()

sample_temp = p/p_sum

return np.argmax(np.random.multinomial(\

1, sample_temp, 1))

Let us pick a random number to get a sequence. We will
generate characters one at a time and they will be added to

the initial sentence:

start_ix=random.randint(0, len(text) - seqg_len - 1)
generated= '’
sentence = text[start_ix: start_ix + seqg_len]

generated += sentence

This function lets us obtain those

samples.

We pick a sequence at random.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 299

An initial sentence will be given for example by:

> print(sentence)

ily believe to be faithful representatio

Let us generate 400 characters with the model. Remember
that we will get predictions in terms of indices and they
will need to be translated back into characters using the

dictionaries we defined earlier on in this section:

for i in range(400):
x_pred = np.zeros((1, seq_len, len(chars)))
for t, char in enumerate(sentence):

x_pred[0, t, char_ixs[char]] = 1.

preds = model.predict(x_pred, verbose=0)[0]

next_index = sample(preds, diversity)
next_char = ixs_char[next_index]
generated += next_char

sentence = sentence[l:] + next_char

The generated text for the sequence above would look

similar to the following;:

ily believe to be faithful representation with

their body had a secress of a strong to be one of
the first and single something that we really on
the ancerty and reason in the country as a sense

of the mainty of me the work and well all the wood

Your sentence will surely be
different.

We generate 400 characters with
our LSTM. Remember that we
need to translate back using our

reverse index.

Not bad, particularly when
considering that this was
generated character-by-character
with a simple LSTM.

300 J. ROGEL-SALAZAR

in the most concesing the work down his attant on
the world that the stubles, and seemed to a does
we should be dead, and the england for my proports

of for the statue to the parents for the mos

It may not seem like much, but bearing in mind that the text
was generated one character at a time and without prior
knowledge to the English language, the model was able to
generate word-like groups of characters most of which are
actual English words such as “reason”, “work”, “england”,
“country or “dead”. The results are by no means perfect, but
remember that the neural network architecture we build

only had a single LSTM layer.

4.5 Summary

IT HAS BEEN A LONG journey, and I hope you have enjoyed
the ride. In this chapter we have covered some of the most
important aspects behind the magic and “unreasonable
effectiveness” of neural networks. Given the influence

that neural networks and deep learning have and with the
number of use cases growing, this is truly an area in data

science that any Jackalope data scientist needs to cover.

We started our journey with a trip down memory lane,

where we looked at an abridged historical account of some
of the developments that have made neural networks shine.
We saw how some of the ideas behind modern architectures

started life much earlier than a lot of us imagine. Indeed

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON

the inspiration provided by biological neurons is a useful
analogy but realising the main differences is also important.
The development of the perceptron is a clear step in the
development of what we call deep learning and a good

undestanding of its capabilities and limitations is a must.

Looking at the directed graphs used to represent neural
nets, made out of nodes and layers, we get a clear picture
of the flow of information, from layer to layer and node

to node. We saw how the receiving nodes take both the
input information and the weight of the connecting edges
to compute a combined output. All this, with the aid of an
activation function. In turn this output is sent to the next set
of nodes in the following layer. Deciding on the number of
layers and nodes is an important task and we saw how we
can go from representing linear patterns through to more
complex representations simply by changing the number of

nodes in a hidden layer.

After getting a good understanding of the feedforward step
in a neural network, we described the way the model can
learn from its mistakes by looking at the errors incurred

by the predictions after a single feedforward pass. The

key to adjusting the weights in the network relies on the
application of the chain rule to backpropagate the errors.
Several round trips of feedforward and backpropagation
enable the model to improve its predictions. With this
information we were able to create our first neural network
from scratch and looked at the effect that the number of
nodes in a layer has in the overall classification boundaries

generated by the model.

301

302 J. ROGEL-SALAZAR

At this point we were able to take a look at expanding the
number of layers, nodes and connections within a neural
network and entered the world of deep learning. We used
Keras to implement these architectures as it offers a friendly
and powerful manner to build our networks. We recreated
the network we built from scratch and discussed the
implementation of two popular architectures, namely
convolutional neural networks (CNNs) and recurrent neural
networks (RNNs). We created an image classification
network to exemplify the work of CNNs, and generated
character-level language with the help of a long short-Term

memory RNN.

No brainer!

>

Here Is One I Made Earlier: Machine Learning

Deployment

WE HAVE COVERED A LOT of ground in this and its
companion book Data Science and Analytics with Python*. We
have discussed the trials and tribulations of Jackalope data
scientists, seen the differences between supervised and
unsupervised learning, and talked about models such as
regression, decision trees, time series, neural networks,
logistic regression and natural language processing
techniques among others. It is a large landscape and there
are many areas into which we could delve much deeper, or

indeed some others we have not even touched.

Of all those areas, in this chapter we will discuss some
aspects that we need to take into account in order to not
only build a powerful model, but also make it part of a data
product that can be used by its intended consumers. Not
only does this require the close collaboration of the

triumvirate formed by a Jackalope data scientist, project

* Rogel-Salazar, J. (2017). Data
Science and Analytics with Python.
Chapman & Hall/CRC Data
Mining and Knowledge Discovery
Series. CRC Press

We can build powerful models,

but who will use them?

304 J. ROGEL-SALAZAR

manager and data architect, but also the support of a

product owner and subject matter experts.

We will first talk about data products, the requirement to

build pipelines and processes and the need for creating

machine learning models able to perform scoring on device.

We will then provide an example for deploying a simple
machine learning model in a mobile device such as an
Apple iPhone. To that end we will use some of the
capabilities that the ecosystem for these devices offers,
including the use of XCode and the Swift programming

language.

5.1 The Devil in the Detail: Data Products

NOTHING AS PERVASIVE AS A product. We all recognise
them, buy them, sell them and/or use them. A product is a
good idea, method, information, object or service that has
been created as a result of a process in order to satisfy a
need or want. Typically we think of products as tangible
objects. With that being the case, it could be surprising to us
when we first hear about a data product. We can think of a
data product as any other product, but one whose existence
meets the need or want we mentioned above through the

employment of data.

That definition is still quite broad and wide-encompassing;
after all, a number of digital products out there use data.
Things such as websites or portals for example. In our case

we would like to concentrate on those data products whose

We will build an iOS app!

Products are not exclusively

tangible objects!

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 305

main raison d’étre is centred around data. You may think

that we are splitting hairs here, but hear me out. A data Ok, read me out... This is not a
product is still a product, and thus the standard podeast after all
considerations of developing a product do apply: Meet a

customer need, improvement through feedback,

competition, prioritisation, etc. You name it. That is true

even for those super expensive products in fictional planet No bananas on Algon though!

Algon, the fifth world in the system of Aldebaran, the Red

Giant in the constellation of Sagittarius.

Nonetheless, a data product distinguishes itself for the

development considerations we need to make around the

availability, processing and meaning of data. No wonder

that the powers of a Jackalope data scientist are in high Or indeed of a rangale of
demand around the creation of data products. The main Jackalope data scientists.
consideration is therefore the incorporation of data, and

data science techniques while going beyond data analysis,

to the provision of value for the customer. It is the idea of

putting data understanding into production.

We can think of different categories of data products

including:

* Raw data - Making data available though appropriate

pipelines.

* Derived data - Processing and calculating fields that can

be used later in the funnel.

¢ Algorithms - This has been the main topic of our A categorisation of data products

discussions. We pass some (raw /derived) data through in increasing order of complexity.

an algorithm to obtain understanding useful to the users.

306 J. ROGEL-SALAZAR

* Decision support - Enabling the user to make a decision
based on better information. The aim is to provide the
information in an easy way to be consumed. These are

the products we will talk about in this chapter.

* Automated decision-making - This is closer to the overall
goal of artificial intelligence where the process of making
a decision is delegated to the machine without user

intervention.

As we move from raw data into automated decisions, not
only do we move in an increasing scale of complexity,
requiring different skills in the development of the product, = The different data product

but also the products have different intended audiences. For ~ ca¢gories above have very

different intended audiences.
raw and derived data products, as well as algorithms, the
audience tends to be technical. However, for the decision
support and automated decision-making, the end users will
tend to be more specialised and perhaps not even technical

at all.

We have been considering the usage of algorithms as data

products to be consumed by us (Jackalope data scientists)

to understand the patterns available in our data. In this

chapter we are concerned with the next level in the scale

above, where the available data is provided to a suitable

algorithm to extract an insight and we are then interested in ~ Iknow, I know... actionable
providing this power to our users or customers, particularly insights...

non-technical ones.

As it is the case with many other products, they do not
simply arise fully formed, like Venus from the sea-foam.

Instead, we need to apply investigation, feedback and

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 307

expertise to hone in on the problem we are trying to solve.
A methodology that comes to mind in these situations is
Agile?, which gives us the opportunity of exploring and
understanding our problem, while being flexible providing
us with an opportunity to learn, evolve, pivot and create
better products. The idea of a unicorn data scientist is not
the ideal in an agile development cycle, instead a team of
shrewd Jackalope data scientists will enable the wider team

to be nimble and multi-functional.

The multi-functional team we refer to is not just made out
of data scientists. In general we require data architects,
engineers, product managers and subject matter experts in
order to create a successful data product. Data scientists
need to liaise with engineers to obtain a reliable dataset;
subject matter experts need to provide their know-how at
crucial development stages and verify how useful results
may be, while informing product managers about the
direction of travel for the product. Communication among
all these agents is therefore paramount and Agile may be
able to facilitate this as part of the ceremonies that form part

of a good implementation of the methodology.

There is no magic number for the amount and number of
data sources required by a data product. Data science is a
hungry, even greedy, affair: The more data available, the
better. In that sense, the assessment that the team will need
to make is not only about the data quantity and quality, but
also about the timeliness of data availability, as well as the
data combinations that can be pursued in order to create

models that benefit/improve the product. Furthermore,

2 Stellman, A. and J. Greene (2014).
Learning Agile: Understanding
Scrum, XP, Lean, and Kanban.
O'Reilly Media

Working in a multi-functional
team under a methodology such
as Agile enables the successful

creation of good products.

The fact, you have standups in the

morning, does not mean you are

applying Agile.

Data science is a greedy discipline,
the more data the better!

308 J. ROGEL-SALAZAR

depending on the type of algorithms employed in the data
product, it may be possible to make indirect observations of

signals in the data to predict useful information.

All in all, as any data product is still a product it will need
to meet the needs or solve the problems that real
users/customers/people have. The important thing
therefore is to start with the problem statement and iterate
it. There is no doubt that technology is an important factor
in the successful development of a data product, but it is not
a panacea. Starting up with the technology and finding a
problem to solve is the equivalent of using a hammer to
tighten a screw. In some cases it may work, but it would be
better to find technology that helps solve the problem at
hand.

The success of a good data product relies on the
collaboration and effort of the team behind it and, to a
larger extent, on the users whose pain points the product
helps mitigate. As such, our task as Jackalope data scientists
is to use the most appropriate data to employ in our
development, make use of suitable algorithms and
collaborate with data engineers, architects, product and
project managers, and yes, even users. We can then let our
tools, languages and platforms deliver a solution to the

problem statement.

This may take many forms and one way to tackle this
challenge is through the creation of user-friendly interfaces.
These applications let users consume the results of the data

product. For instance, consider a product that applies a

Starting with the problem

statement is paramount.

Or any product actually!

After all, if the users do not see
the value in the product, they will

not use it.

The creation of a user-friendly
interface may help in serving the
need of our customers better than

handing them a Python script.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 309

multivariate regression algorithm to predict house prices. It

supports users that are interested in climbing the property We will build a similar solution
ladder and they can be better served with the help of a later on; stay tuned!
purpose-built application that makes the prediction easier to

compute. Compare this to handing them a programming

script or a table with numbers.

The deployment of machine learning algorithms as part of a
data product can be achieved in various ways. Depending
on the ultimate goal of the product and its intended
audience this may range from programmatic authoring,
scheduling and monitoring of data pipelines with tools such

as Apache Airflow3 or Luigi4; within platforms such as 3 Apache Airflow (2014). Apache
Airflow Documentation.

https:/ /airflow.apache.org.
Accessed: 2019-09-30

4 Spotify (2014). Luigi.

for example. The extension to this is the concept of machine https:/ / github.com/spotify /luigi.
Accessed: 2019-09-30

Dataiku, IBM Data Science Experience and Azure; or in

device, where processing happens directly in a smart phone

learning at the edge, where computing power is distributed

across a network of devices, making use of the Internet of

Things, instead of a centralised system in the cloud. We may IoT for short.
not cover here computing at the edge, but let us take a look

at deployment on a single device.

5.2 Apples and Snakes: Core ML + Python

WITH THE HIGH AVAILABILITY OF a large number of
connected devices, the computing power that can be
harnessed for the application of machine learning is huge. A

lot of these devices are small enough to be carried around Here, we are interested in

with us and are part of our daily lives. Furthermore, they harnessing the power of mobile

devices.
come with a variety of sensors and monitors that can gather

https://github.com/spotify
https://airflow.apache.org

310 J. ROGEL-SALAZAR

data, which in turn can be used by the data products we

build for the benefit of our users.

It is possible to implement our data products to be deployed

in a mobile device, enabling the machine learning The processing happens directly in
algorithms to process and execute directly there, without the device!
the need of sending data or information to a server and
coming back to the user. This has advantages for data
privacy as the information never leaves the user’s device
and reduces friction in terms of latency for the user, for We want to deliver our models
example. As you can see, this offers a number of into the hands of our users.
advantages, as the machine learning models we develop are

delivered into the hands of your users, quite literally.

There are some tools that enable the deployment of machine
learning models into a device, taking a trained model Although we are concentrating our

and encapsulating it in a format that is compatible with discussion in the Apple ecosystem,

there are other solutions out there!
the ecosystem of the device in question. In this case we
are going to concentrate on some of the tools that Apple
has made available to developers in order to integrate
machine learning workflows into applications, aka apps. Our aim is to deploy a machine
One such tool is Core ML which is a computer framework, learning model into an app.
in other words a software abstraction that enables generic
functionality to be modified as required by the developer to
transform it into software for specific purposes. This enables

us to develop complex projects or simple apps.

Core ML is a framework created and provided by Apple to
speed up the development of apps that use trained machine
learning models. Notice that word we wrote in italics in

the description of the framework: trained. This means that

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 311

the model has to be developed externally with appropriate
training data for the specific project in mind. For instance if
you are interested in building a classifier that distinguishes
Jackalopes from hares, and horses from unicorns, then you
need to train the model with lots of images of Jackalopes
and hares, horses and unicorns first. Then you can apply

the Core ML framework to integrate the model within an

app.

Core ML supports a variety of machine learning models,
from generalised linear models (GLMs for short) to neural
networks. A summary of the models that can be used with
Core ML is shown in Table 5.1. It is possible for you to
develop your own custom conversion tool in case your
model is currently not supported. Core ML also helps with
the task of adding the trained machine learning model

to your application by automatically creating a custom
programmatic interface that supplies an API to your model.

All this is within the comfort of Apple’s own IDE: Xcode.

There is an important point to remember. The model has

to be developed externally from Core ML, in other words
you may want to use your favourite machine learning
framework, computer language and environment to cover
the different aspects of the data science workflow. You

can read more about this in Chapter 3 of Data Science and
Analytics with Python book’. In any case, whether you use
Scikit-learn, Keras or another supported framework, the
model you develop has to be trained (tested and evaluated)
beforehand. Once you are ready, Core ML will support you

in bringing it to the masses via your app.

Core ML takes pre-trained
machine learning models and

makes them available with in an

app.

Check the Apple Developer
documentation for further model

supported in the future.

API stands for Application

Programming Interface

That word again; in this case
think Python libraries such as

Scikit-learn for instance.

5 Rogel-Salazar, J. (2017). Data
Science and Analytics with Python.
Chapman & Hall/CRC Data
Mining and Knowledge Discovery
Series. CRC Press

312 J. ROGEL-SALAZAR

Supported
Model Type Supported Models
yp bp Frameworks
Neural Feedforward, Caffe vi, Keras
networks convolutional, recurrent 1.2.2+
Tree Random forests, boosted Scikit-learn 0.18
ensembles trees, decision trees KGBoost 0.6
Support . . o
A Scalar regression, multi- Scikit-learn 0.18,
vector
. class classification LIBSVM 3.22
machines
Generalised Li .
inear regression, L
linear loeisti & . Scikit-learn 0.18
ogistic regression
models & &
Sparse vectorisation,
Feature .. o
. . dense vectorisation, Scikit-learn 0.18
engineering . .
categorical processing
Pipeline Sequentially chained
b ! y Scikit-learn 0.18
models models

In 2019 Apple announced the release of an application

called Create ML® bundled within the set of tools they

make available to the developer. It lets us create and deploy

a machine learning model and the aim of the tool is to

democratise training of models as the output from Create

ML is already in the Core ML format. This means that the

step of converting your model is not required. Create ML

supports workflows for computer vision, natural language

processing, sound classification, activity classification (using

Table 5.1: Models and frameworks

supported by Core ML.

¢ Apple Inc. (2019b). Core ML.
https:/ /developer.apple.com/

documentation/createml. Accessed:

2019-10-01

https://developer.apple.com
https://developer.apple.com

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 313

motion sensor data) and tabular data. We will not cover
the use of Create ML here, as it is outside the remit of this
book. However, the interested reader can refer to the Apple

Developers’ site for more information.

As for the advantages of Core ML, Apple mentions” that 7 Apple Inc. (2017a). Core ML.
https:/ /developer.apple.com/
documentation/coreml. Accessed:
2019-10-01

it is optimised for on-device performance. This minimises
the memory footprint and power consumption of the app.
Also, the fact that the model runs strictly on the device
ensures the privacy of user data and guarantees that the
app remains functional and responsive when a network
connection is unavailable. In order to use our model within
our app, we need to translate our implementation into a
.mlmodel format. Let us find out more about how we can do

that by building our own app.

5.3 Machine Learning at the Core: Apps and ML

IN THIS SECTION WE WILL cover the end-to-end creation

of a simple app with machine learning at its core. Starting Yes, at its (Apple) Core (ML)!
with the creation of a suitable Python environment for the

creation of the model and its translation to Core ML format,

all the way to running it in your iPhone. We are largely

following the workflow depicted schematically in Figure

5.1, starting with the development in Python using libraries

such as Scikit-learn and Keras. We then will convert our

Python model into Core ML using Core ML Tools. We then

integrate the translated model into our app development

and finally deploy the app to our users.

https://developer.apple.com
https://developer.apple.com

314 J. ROGEL-SALAZAR

- m .

Python Model Model

Model

Development Conversion Integration Deployment

5.3.1 Environment Creation

IN PREPARATION TO TRAINING A model which will be
converted into Core ML so as to be integrated within our
application, it is best practice to make sure we have a
suitable environment to work on. When Core ML first came
to light, the Core ML module only supported Python 2!
Fortunately, things have moved on since then and now

Python 3.x is also supported.

In order to ensure reproducibility of the stack, we will
create an environment with the appropriate modules. In
this case we are using Anaconda and will create a conda
environment called coreml with Python 3.7; it will include
some of the libraries we may be using such as Scikit-learn,

Pandas, matplotlib, etc.

> conda create --name coreml python=3 ipython

jupyter scikit-learn pandas matplotlib

Figure 5.1: We follow this
workflow to deploy our machine
learning models to our app.

Creating an environment for Core

ML is best practice.

You may use your favourite

Python distribution.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 315

We need to install the Core ML Tools module® and the

easiest way to do this is to use pip install

> conda activate coreml

(coreml)

> pip install coremltools

5.3.2 Eeny, Meeny, Miny, Moe: Model Selection

Now THAT WE HAVE A suitable environment to carry out
our development, we need to get to the ever so difficult
task of choosing a model. This is not as simple as picking
up one of the many algorithms available to us, and the
decision depends to a large extent on the use case at hand.
The main recommendation is therefore to consider the
problem statement that we are trying to address, obtain the
appropriate data to help with answering the problem and

brainstorm with the rest of the team to assess best actions.

Model selection will also be dictated by the metrics of your
algorithm and indeed the application of best practices in
terms of data splitting, feature engineering, cross-validation,
etc. We will not cover these steps here, as they have been
addressed in Chapters 1 and 3 of Data Science and Analytics
with Pythond. Instead, we are interested in the steps that
follow the successful selection of the model. Let us consider
for the sake of argument and without loss of generality that
we are relying on our good old friend, the dependable linear

regression model.

8 Apple Inc. (2017b). Core ML tools.
https:/ / github.com/apple/coremltools.
Accessed: 2019-10-01

Remember to use the data science
workflow. Start with the problem
statement and use appropriate
data.

9 Rogel-Salazar, J. (2017). Data
Science and Analytics with Python.
Chapman & Hall/CRC Data
Mining and Knowledge Discovery
Series. CRC Press

https://github.com

316 J. ROGEL-SALAZAR

We are indeed all familiar with a line of best fit, and surely
many of us remember doing some of it by hand! Also, who
has not played with Excel’s capabilities to perform a linear
regression? Let us remind ourselves of some of the basics: A
linear regression is a model that relates a variable y to one

or more explanatory (or independent) variables x;.

The parameters that define the model are estimated from
the available data relevant to the problem. Remember that
there are a number of assumptions about the explanatory
variables. You can find more information in Chapter 4 of
the companion book mentioned above. We can think of the
goal of a linear regression model to draw a line through the
data as exemplified in Figure 5.2. In such a case, data for the

independent variable x; is used to determine the value of y.

Let us take the case of 2 independent variables x; and x;.
The linear regression model to predict our target variable y
is given by:

Yy =a+ B1x1 + Prxo +e, (5.1)

where « and ; are the parameters to be estimated. Once the
estimation is obtained, we use these parameters to generate
predictions. With the aid of techniques such as least squares,
it is possible to estimate the parameters «, 1 and 8, by
minimising the sum of the squares of the residuals, i.e.,

the difference between an observed value, and the fitted
value provided by a model. Once we have determined the
parameters, we are able to score new (unseen) data for x;

and x, to predict the value of y.

You know who you are!

We can think of the goal of linear
regression as finding a line of best
fit.

Once we have estimations for «, 1
and B, we can use the model to

score new, unseen data points.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 317

10

Figure 5.2: A line of best bit for
the observations y dependent of
In this case, we will show how we can do this for a famous features x;. yoep
dataset called “Boston House Prices” where our aim is to
predict the price of a house in Boston given a number of
features or attributes of the property. We will use a couple We will use the “Boston House

of variables such as the number of bedrooms in the house Prices” dataset in the rest of this

chapter.
and a crime index for the area. Remember that the aim will
be to show how to build the model to be used with Core

ML and not build a perfect model for the prediction.

5.3.3 Location, Location, Location: Exploring the Data

WE CONSIDER THAT OUR PROBLEM statement is the

challenge of predicting the price of properties in a city.

318 J. ROGEL-SALAZAR

What about concentrating in Boston? It seems like a great
location to explore. There is a bit of a caveat in this case; we
will transport ourselves with our TARDIS to the 1970s as the

dataset we will use comes from that time.

The dataset in question has information collected by the U.S.

Census Service concerning housing in the area of Boston,
Massachusets and originally published by Harrison and
Rubinfeld™. The original aim for this dataset was to assess
the willingness that market participants would have to pay
for clean air. That is the reason the dataset includes date on

the concentration levels of nitric oxides.

To make our discussion more manageable, we will use
our knowledge of one of the most well-known models in
statistics and yes, machine learning: Linear regression. We
know that we can relate the values of input parameters x;
to the target variable y to be predicted. Let us however do

some basic exploration of our dataset.

The dataset contains 506 data points with 13 features:
¢ CRIM - per capita crime rate by town

¢ ZN - proportion of residential land zoned for lots over

25,000 sq.ft.
¢ INDUS - proportion of non-retail business acres per town

* CHAS - Charles River dummy variable (1 if tract bounds

river; 0 otherwise)
* NOX - nitric oxides concentration (parts per 10 million)

¢ RM - average number of rooms per dwelling

Other time travelling methods
may be available... at some time or
other...

° Harrison, D. and D. Rubinfeld
(1978). Hedonic prices and the
demand for clean air. J. Environ.
Economics and Management 5,
81-102

These are the features or attributes
that are included in the “Boston

House Prices” dataset.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 319

* AGE - proportion of owner-occupied units built prior to
1940

¢ DIS - weighted distances to five Boston employment

centres
* RAD - index of accessibility to radial highways
¢ TAX - full-value property-tax rate per $10,000
¢ PTRATIO - pupil-teacher ratio by town

e B-1000(Bk — 0.63)> where Bk is the proportion of black

population by town
o LSTAT - percentage of lower status of the population

The target is called MEDV and it represents the median

value of owner-occupied homes in the $1,000s.

We are going to use Scikit-learn and fortunately the dataset

comes with the module. The input variables are included That is awesome, right?
in the data method and the price is given by the target.

We are going to load the input variables in the dataframe

boston_df and the prices in the array y:

from sklearn import datasets

import pandas as pd

boston = datasets.load_boston() We retrieve the dataset directly
from Scikit-learn!
boston_df = pd.DataFrame(boston.data)

boston_df.columns = boston.feature_names

y = boston.target

320 J. ROGEL-SALAZAR

We are going to build our model using only a limited
number of inputs. The reason for this decision is two-fold:
We are simplifying the workflow to fit our discussion, but

more importantly when we put the data product in the For ease of discussion, we will

hands of our users, we would like them to use a friendly only use two variables in our

model: Crime rate and number of
version of the prediction where they are able to modify a

rooms.
few features, rather than a bloated application no one would
like to use. In a more realistic situation, these are decisions
that would need to be carefully considered as part of the
product development and testing sprints.
In any event, here we will pay attention to the average
number of rooms and the crime rate:
X = boston_df[['CRIM', 'RM']] We select the variables of interest.
X.columns = ['Crime’, 'Rooms’]
The description of these two attributes is as follows:
> X.describe()
Crime Rooms
count 506.000000 506.000000 We can see the descriptive
mean 3.613524 6.284634 statistics for our variables of
interest.
std 8.601545 0.702617
min 0.006320 3.561000
25% 0.082045 5.885500
50% 0.256510 6.208500
75% 3.677083 6.623500
max 88.976200 8.780000

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 321

Property Price
S & B8 3

[
o

O o O 0O O O@D@O
@8%
©8

Property Price
S

O O

@) @)

20 40 60 80
Crime Rate per Capita

Figure 5.3: Boston house prices
versus average number of rooms
(top) and per capita crime rate
(bottom).

322 J. ROGEL-SALAZAR

As we can see the minimum average number of rooms is
3.56 and the maximum is 8.78. The median is 6.20. In the
case of the per capita crime rate by town, the minimum
value is 0.006 and the maximum is 88.97, nonetheless the
median is 0.25. We will use some of these values later to
define the ranges that will be provided to our users to find
price predictions. We can see the relationships of these two

features versus the house price values in Figure 5.3.

5.3.4 Modelling and Core ML: A Crucial Step

IN THE LAST SECTION WE have taken a look at the Boston
House Prices dataset, loaded it directly from Scikit-learn
and looked at some of the features of interest for our
predictive model. It is now time to build the linear
regression model we talked about earlier on. Then we will
convert it into a .mlmodel to be used in an iOS app. As

usual, we are going to need some modules:

import pandas as pd

from sklearn import linear_model

from sklearn.model_selection\
import train_test_split

from sklearn import metrics

import numpy as np

import coremltools

We are familiar with the modules and methods mentioned

above. The newcomer in this case is coremltools which will

enable the conversion of our model to be used in iOS.

These figures will inform the
parameters that we will make

available to our users through the

app.

We will build a linear regression

model for this dataset.

Importing modules is second

nature to us!

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 323

We have already loaded our data in the previous section and
created a subset of features including the crime rate score
and the number of rooms in the property. We also need to

have our target variable, i.e., the price of the property:

y = boston.target

We know we need to separate the target variable from the
predictor variables so that the model can be built. Although
this dataset is not too big, we are going to follow best

practices and split the data into training and testing sets:

X_train, X_test, y_train, y_test=train_test_split(

X, y, test_size=0.2, random_state=7)

In this case we are reserving 20% of the dataset for testing
and the split is initialised with a random seed equal to 7.
Remember that the idea is to use the training set only in the
creation of the model. We then test with the remaining data

points.

Let us now create a self-contained function to build a

generalised linear model:

def glm_boston(X, y):
print(’'Implementing a linear regression’)
1lm = linear_model.LinearRegression()
gnl = m.fit(X, vy)

return gml

This creates an instance of the LinearRegression algorithm
in Scikit-learn and fits it with the data in X to predict the

target y. Let us use this function with our training data:

We need to define our target

variable.

We split our data into training and

testing.

This function implements and fits
a linear regression model from

Scikit-learn.

324 J. ROGEL-SALAZAR

my_model = glm_boston(X_train, y_train)

The linear regression model we are implementing is of the

form:

Yy =ua+ P1x1 + Paxo + €, (5-2)

and the fitting of the model we just performed will let us
extract the fitted parameters & and ; that will enable us to

make predictions. Let us see our coefficients:

coefs = [my_model.intercept_, my_model.coef_]

We can check what the values are:

> print(’'The intercept is {0}'.format(coefs[0]))

The intercept is -33.5555348465913.

> print(’'The coefficients are {0}'.\

format(coefs[1]))

The coefficients are [-0.28631372 9.0980796].

The model is ready to be tested against the test data:

y_pred = my_model.predict(X_test)

We can take a look at some metrics that let us evaluate our

model against the test data:

Here, we refer to « as the intercept

and f; as the coefficients.

We can see the estimated value
of our coefficients with the aid
of the properties .intercept and

.coeff_ of our model.

The .predict method of the
model lets us score unseen data

and make predictions.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 325

> print(’'The mean absolute error is {0}'.format(\

metrics.mean_absolute_error(y_test, y_pred)))

The mean absolute error is 4.868982830602648.

> print(’'The mean squared error is {0}’.format(\

metrics.mean_squared_error(y_test, y_pred)))

The mean squared error is 65.8994897857804.

Another important metric we would like to take a look at is

the R-squared:

> print(’'The r-squared is {0}'.format(\

metrics.r2_score(y_test, y_pred)))

The r-squared is 0.18447543902501917.

We know that a value of 1 means that we have a perfect
prediction. In other words, the variance of the data will be
explained fully by the model. In this case we have less than
20% of the variance explained... Not great, but not terribly
bad. Let us continue with this model. Remember that our
aim here is to look at the deployment of the model rather

than the accuracy we achieve with it.

Let us take a look at one of the test samples and its
prediction. We will set up a dictionary for the input features,
and see the prediction that the model has made for these

values:

It is important to look at

evaluation metrics for our model.

R-squared is a typical metric used

in linear regression.

Remember that our aim here is to
look at the deployment of a model.
You can spend more time finding
a better model than this good
enough one (for our purposes!)

A dictionary will be used in
passing values to the Core ML
model!

326 J. ROGEL-SALAZAR

sample = { ’'crime’: X_test.iloc[O]['CRIM’'],
"rooms’: X_test.iloc[O]['RM’'] }
ypred_sample = y_pred[0]

In this case we are extracting the first set of values in the

testing dataset. The prediction for this set of values is stored

in the first element of the array y_pred we calculated before:

> print('A property with {0} is valued\
{1} thousand dollars’.format(\
sample, ypred_sample))

A property with {’crime’: 3.8497, ’'rooms’: 6.395}
is valued 23.524462257014 thousand dollars

A property with an average number of rooms equal to 6.39
in a location with a crime rate score of 3.84 is predicted to
be valued as 23.52 thousand dollars.

If we imagine that this is the model that we are interested
in deploying to our users, then we are ready for the big
moment: Converting our model to an .mlmodel object!!

Ready?

coreml_model = coremltools.converters.\
sklearn.convert(my_model,\
input_features=['crime’, ’'rooms’],

output_feature_names='price’)

Making a prediction with a pair of

values for our chosen attributes.

We can easily check the predicted

value for the chosen parameters.

In reality, you will probably have
to spend more time pondering
this.

The named parameters in the
translation will be used in the app

implementation later on.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 327

Since we are using Scikit-learn to develop our model, we

need to employ the sklearn.convert method of

coremltools.converters to convert the model into Core ML

format. Remember that currently you can also convert We are using sklearn.convert as

models developed with Caffe, Keras, LIBSVM and XGBoost. our model is originally developed
with Scikit-learn. Core ML

In the code above we are passing the name of our model supports other frameworks

from Scikit-learn, together with the names we would like to ~ too.
use for our input features, i.e., crime and rooms; we also

provide a name for the output, in this case price.

Now that we have a Core ML objects, we can edit some of

the metadata attached to it. This will make it easier to be

integrated to the rest of the deployment stack via XCode. Adding metadata to our Core ML
For instance, information about the author, licensing and model is easy.
others can be consumed by XCode UL Also the input and

output descriptions can be used as comments in the code

generated by Xcode for the model consumer. Finally, we

can save the model. We will import the saved model in our

app later on, but for now we store it in a file with the name

PriceBoston.mlmodel.

coreml_model.author = ’'JRogel

coreml_model.license = 'BSD’ n this case we are adding

metadata about the author, the
coreml_model.short_description = 'Predicts the license and a description.

price of a house in the Boston area (1970s).’

coreml_model.save('PriceBoston.mlmodel’)

We can use the support that Core ML provides for
visualising converted models, letting us see the building We can even visualise the model.

blocks of the model itself. We can do this with the help of

328 J. ROGEL-SALAZAR

the .visualize_spec method, and an example of the result

can be seen in Figure 5.4.

coreml_model.visualize_spec()

CoreML Graph Visualization

Shapes On/Off

Reset Grq)hJ

[feature\!ectorlzer] Node Information

Parameters

| glmRegressor |
postEvaluationTransform : 0

offset : [-33 555534846591286]
outputs ; ['price]

inputs : ['__feature_vector__'"]
Fipeline Component :
GLMHAEGHESSOR

Figure 5.4: Visualisation of
the Boston house price model

Let us check that the converted model returns the same converted into Core ML format.

predictions as the Scikit-learn model. All we need to do is
pass to the Core ML model a dictionary with the features
defined in the conversion, in this case crime and rooms. This
can be for instance the dictionary called sample we defined

above:

cml_pred = coreml_model.predict(sample)

Let us print the result:

> print(cml_pred
P (P) We can check that the prediction

of the Core ML model matches

{’price’: 23.524462257014} that of the original Scikit-learn
one.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 329

and as we can see the result is a dictionary with price as a
key and its value matches the prediction obtained with our
linear model defined in Scikit-learn. We are ready for the
next step and that is to deploy our model in an app. We will

be using Xcode for that purpose.

5.3.5 Model Properties in Core ML

WE HAVE CREATED OUR CoRE ML model out of a linear
regression algorithm developed with Scikit-learn. The
model predicts prices for properties in the Boston area
based on two predictors, namely crime rate and average
number of rooms. It is by no means the best model out
there and our aim is to explore the creation of a model (in
this case with Python) and convert it to a Core ML model

that can be deployed in an iOS app.

Before we move on to the development of the app, it would
be good to take a look at the properties of the converted
model. If we open the PriceBoston.mlmodel we saved in
the previous section, we will see the information shown in

Figure 5.5.

We can see the name of the model (PriceBoston) and the
fact that it is a “Pipeline Regressor”. We saw that the model
can be given various metadata attributes such as Author,
Description, License, etc. We can also see the listing of the

Model Evaluation Parameters:

Opening it in Xcode of course!

We can see the metadata we added
to the model.

330 J. ROGEL-SALAZAR

= PriceBoston.mimodel

Machine Learning Model

Name

Type

Size
Author
Description

License

PriceBoston
Pipeline Regressar
314 bytes

JRogel

Predicts the price of a house in the Boston area (1970s).

BSD

Model Class
PriceBaston
Prediction
Mame Type Description
¥ Inputs
crime Double
raams Daouble
¥ Outputs
price Double
Inputs
crime Double**
rooms Double
Outputs
price Double

They take the form of Inputs (crime rate and number

of rooms) and Outputs (price). There is also an entry to

describe the Model Class (PriceBoston) and you can see

that since the model is not part of a target, the target class is

not present. Once we integrate this model to an app, Xcode

will generate the appropriate code automatically.

i
=

Figure 5.5: Properties of the
Boston Pricer Core ML model
created from Scikit-learn.

Note that the inputs and outputs

are expected to be doubles.

Although there is a Model Class,

the target class is not present.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 331

The autogenerated Swift code will define the input variables
and feature names as well as a way to extract values out of
the input strings. It will set up the model output and other
components such as defining the class for model loading
and prediction. All this is taken care of by Xcode in one go,
making it very easy for us to use the model in our app. We

will start building that app in the next section.

5.4 Surprise and Delight: Build an iOS App

WE HAVE COME A LONG way and we are now ready to
unleash our Boston pricer algorithm to the World! An
implementation in Scikit-learn will be useful for a number
of cases. In many others, we need to take into account the
shocking fact that not everyone is interested in openning

a Jupyter Notebook to run a prediction. Instead, if we are
interested in deploying our algorithm to, say, non-technical
users, we will have to surprise and delight them with a

well-built app.

In this section we will cover the overall steps that will get
our algorithm encapsulated into a very simple iOS app. The
intention is to provide a flavour of the steps that need to be
covered, and I would encourage you to spend more time
thinking about the functionality of the app, the interactions
that your users will need to go through, the flow of the
application, the look and feel, the design, logos and images.
And perhaps more importantly user testing and acceptance.

With that warning, let us get started.

Once we add our model to a
project, Xcode will autogenerate

the target class for us.

If only everyone could use Jupyter
notebooks, or, even better, Python

scripts in the terminal... not!

The app will be very simple, and
I hope you take some time to

improve it!

332 J. ROGEL-SALAZAR

5.4.1 New Project: Xcode

LET US START BUILDING AN iOS app that will use the

model we created above, and enable our users to generate a

prediction for the price of a property based on input values An estimate? A valuation?
for the parameters used in the model, namely average

number of rooms and crime rate score. Our aim is to build

a simple interface where the user enters the values of the

chosen features and the predicted price is shown in the

device. Make sure you have access to Xcode and the Core

ML model we created earlier on. Ready?

Choose a temalata for your new project:
BB verchos w05 mests Cross-platiorm (@)
Application
M 5|] =
) =) 5
Single View App Gama Augmented Document Master-Detail App
'\ Reality Aop Basod App
Welcome to Xcode ©
Varsion 1.1 [1141027) Tabbad App Stickar Pack App itassana App
Framework & Library
1 Get started with a playground R
= Explore new ideas quickly and easily, [M
:\Iﬁ Create a new Xcode project ——
% Create an app for iPhone, iPad, Mac, Apple Watch, or Apple TV, Frammwork Rt Ligrary
><: Clone an existing project
sl Start working an something from a Git repasitory. Lancel ravionE

Figure 5.6: Creating a new XCode
project for a Single View App.

Open up Xcode and select “Create a new Xcode project”.
That will open up a new dialogue box; from the menu at
the top make sure you select “iOS” and from the options
shown, please select the “Single View App” option and then ~ We are building a “Single View

click the “Next” button. See Figure 5.6 where the options App.

mentioned above are highlighted with a black square.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 333

Choose options for your new project:

Product Mame: Etonpricerl
Team: pNone
Organization Mame:
Organization Identifier:
Bundle Identifier: com.yourcompany.BostonPricer
Language: Swift
User Interface: SwiftUl

Use Core Data

Include Unit Tests
Include Ul Tests

Cancel

The steps above will let us create an iOS app with a single
page. If you need more pages or views, this is still a good
place to start, as you can add further “View Controllers”
and/or “Content Views” while you develop the app. In the
next dialogue box, shown in Figure 5.7, Xcode will be
asking for options to create the new project. Give your
project a name, something that makes it easier to elucidate
what your project is about. In this case, let us call the project
“BostonPricer”. You can also provide the name of a team
(team of developers contributing to your app for instance) as
well as an organisation name and identifier. In our case,
these are not that important and you can enter any suitable

values you desire. Please note that this becomes more

Previous

Figure 5.7: We need to provide
some metadata for the project we
are creating.

You can add more views to your

project, if needed.

We are using SwiftUI to build our

user interface.

334 J. ROGEL-SALAZAR

important in case you are planning to send your app for
approval to Apple. Make sure that you select “Swift” as the
programming language and “SwiftUI” as the User Interface.
We are leaving the option boxes for “Use Core Data”,

“Include Unit Tests” and “Include UI Tests” unticked.

[_-'\ BostonPricer } | iPhone 11 Pro Max BostonPricer: Ready | Today at 09:17
QN & o 3 B < BostonPricer } BostonPricer LaunchScreen.storyboard) LaunchScreen.storyboard {
¥ || BostonPricer M | » View Controller Scene
¥ BostonPricer View Controller

AppDelegate.swift
SceneDelegate.swift ﬁ‘
ContentView.swift
Assats xcassets

LaunchScreen.storyboard

Info.plist

» izl » » »

> Preview Content
v Products

/\ BostonPricer.app

Figure 5.8: The
LaunchScreen.storyboard element

After clicking “Next”, Xcode will automatically open a new is the main interface presented to
our users.

editor and you will see some autogenerated code. Now, on How cool is that!

the left-hand side you will see the Project Navigator, look

for and click on the “LaunchScreen.storyboard” element as

shown in Figure 5.8. This is the main view that our users

will see when the application is launched. You can see on The Launch Screen is effectively a

the right-hand side the shape of our target device, in this splash screen that will be shown

when the app is started.
case an iPhone 11 Pro Max, and you can change that to fit

your needs and those of your users.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 335

b 4 Laun..{Base)) [View..Scene } () View Controller } [view = H B
L 3 Identity and
(=y . e
. N ©) [{»_] 5
Lakel Label Label

UlLabel: Presents read-only taxt

Button
1 7 Segmented Control
Text Field

Slider

Let us add a title and a couple of labels to our splash screen.
We will need three labels and an image view. To do that,
we will use the “Object Library”. In the current window

of Xcode, on the top-right corner you will see an icon with
a plus sign (Figure 5.9); this opens up the Library which
will be shown in a separate window. Look for an icon that
looks like a little square inside a circle (Figure 5.9); this is
the “Object Library” icon. Select it and, at the bottom of the
area, you will see a search bar. There you will search for the

following objects:

e Label

¢ Image View

In this case we are building a very simple splash page and
all we will need is three labels and one image. You can drag
each of the elements from the Object Library into the story
board. You can edit the text for the labels and the button

A label can contain an arbitrary amount of text, but UlLabel
may shrink, wrap, or truncate the text, depending on the size
of the bounding rectangle and properties you set. You can
control the font, text color, alignment, highlighting, and
shadowing of the text in the label.

Figure 5.9: Open the Library with
the plus icon, and the Object
Library with the icon that looks
like a square inside a circle.

The Object Library lets us add
different objects to our screen to

build our app.

Add three Labels and an Image

View to the device screen.

336 J. ROGEL-SALAZAR

by double clicking on them. Change the name of the labels
to “Boston Pricer”, “Advanced Data Science and Analytics

with Python” and your name.

For the Image View, we will need to provide a picture. On
the left-hand side menu select the Assets.xcassets folder. Make sure you add a picture to
You can drag and drop your chosen image there. You will your project.

see something similar to what is shown in Figure 5.10.

BEEZ240MHM & =3 8 < | BostanPricer) BostanPricer } (1] Asset } % JRogel Jackalope | [[]
¥ |2 BostonPricer Apploon JRogel_Jackalope Image
¥ || BostanPricer * JRogel Jackalope

= AppDelegate.swift
» SceneDelegate swift @
ContantView.swift
I I 1% 2x 3x
LaunchScreen staryboard M
nfo.plist \ Universal

> Preview Content

v Froducts

#% BostonPricer.app

Figure 5.10: Drag and drop your
image into the Assets.xcassets

Go back to the Launch Screen storyboard and select the folder.
Image View. From the menu on the top right-hand side
select the Attribute Inspector. Here you can use the Image This is the icon that looks like a

drop-down menu to select the picture you just added to bookmark or an unfilled arrow

pointing down.
your project (see Figure 5.11).

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON

L GiSuich - - ~
AL " o

Lk ’:| View) D JRogel_Jackalope

DUSLUI Flivel
o Lr 5]
u] o
[} £k u)

You will notice that Xcode is giving some warnings about

first add some constraints to our image.

Boston Pricer

G 0]

Cr J Rogel-Salazar

70%

/—hg hiighted

Advanced Data Science and Analytics with Py

Image View

Image

% _JRogel_Jackalope

State Highlighted

_9

Accessibility @ Adjusts Image Size

Symbol Configuration
Configuration Unspecified
Scale Unspecified

Welght | Unspecified

View

(o] o <>

337

Figure 5.11: Select your image in
the Attribute Inspector.

the “Auto Layout” of the application—See Figure 5.12. This
is because we have not provided any constraints to the
objects in the screen. If you were to change the target device
(for example from the iPhone 11 Pro Max to an iPad Pro)

you will see that the location of the objects changes. Let us

¥ % SostonPricer 3 lssues

¥ . Auto Layout Localization

Wiews vilhoul ary layoul constrainls

LaunchSsrean.storyhaard

Wiews without any fayout constraints
rmay elip their content or overlap.
other views.

LaunchScreen. storyboard

iews without any layout constraints
may alip their content or overlap
athar viaws
LaunchScrean.storyboard

Figure 5.12: Auto layout errors.

Add New Alignment Constraints

Horizontally in Container

i Vertically in Container

Add 2 Constraints

Figure 5.13: Let us centre the
image vertically and horizontally.

338 J. ROGEL-SALAZAR

Select the Image Viewer and open the Align menu in the
bottom right-hand side of the canvas (see Figure 5.13).
Align the image vertically and horizontally in the container
by ticking the appropriate boxes and click the button to add

the two constraints.

We now need to ensure the picture maintains a reasonable
size and keeps its aspect ratio. Control-click and drag at
the same time inside the image. You will see a blue arrow
appearing as shown in the left-hand side of Figure 5.14.
When you let go, a pop-up dialogue box will show (as in
the right-hand side of Figure 5.14). Select “Width” in the
pop-up dialogue box.

Boston Pricer BostoI Pricer

Align the picture horizontally and

vertically.

We need to Control-click and drag

at the same time!

a

_Advanced Data Science and

A new constraint will appear in the menu on the right-hand
side of Xcode. There you can edit the constraint. In this case
we would like the image to be less or equal to 200 pixels,

as shown on the left-hand side of Figure 5.15. Control-click

and drag inside the image again. This time select “Aspect

Width
Height

Aspect Ratio

Figure 5.14: We can put
constraints on the height, width
and aspect ratio of our image.

You can manage the constraints
on the boxes that appear in the
right-hand side menu of the Xcode

window.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 339

n Horizontal
Al %« Constant: | = H 200 v]
= (k] Align Center X to: Edit
Horizontal | Priority: 1000 ¥
] Align € Multiplier: Vertical | Constant: | = [0 >}
S ———————— T Alignce Priority: [1000 =
=] Width <= 200 Edit | T
= et = Multiplier: |11 =
Aspect Ratio
Vertical
[1:1 Ratio to: JRogel_Jackalope Edit
=1 Align Center Y to: Edit

Ratio” and edit the constraint for the ratio to be 1:1, as

shown in the right-hand side of Figure 5.15.

Select the “Boston Pricer” label and click on the “Add
New Constraints” tool at the bottom of the canvas. In the
dialogue box click on the bottom bar to make the space to
the nearest neighbour to be 50 pixels—See the left-hand
side of Figure 5.16. Select now the “Boston Pricer” and
the Image and click on the Align tool bar. Align the two
objects horizontally by ticking in the box as shown on the

right-hand side of Figure 5.16.

We will do a similar thing to our other two labels. For the
“Advanced Data Science and Analytics with Python” label,
add new constraints to neighbours at the top, right and left
to be 20 pixels. Make sure that you have the “Constraints
to margins” option ticked. For the label with your name,
add a new constraint to have 20 pixels to the top nearest
neighbour. Then align the centres of this label with the
centre of the image. These steps would have made the

warnings disappear.

Figure 5.15: We can edit the added
contraints for width and aspect
ratio.

The one that looks like a square
between two vertical bars.

Adding constraints could be a
time-consuming task. All this
can be more easily managed with

SwiftUI as we shall see.

340 J. ROGEL-SALAZAR

Highiig)
o] o—0
Boston Pricer sha
Shadow Of
Add New Constraints
7130 -
10067 ~ [10067 -
50.0 -
:ed Data Sclence and Analytics Spacing to nearest neighbor
Dr J Rogel-Salazar Constrain to margins
[width 19467 ~

Il Height 41.0

[0 aspect Ratlo

Add 1 Constraint

Pro Max {.C «R) 2R o fa] @

You can now marvel yourself and run your first iOS app.

Strete

Backe

PR
Bostori Pricep

Add New Alignment Constraints

oo b |E]

= £ 1)/ Leading Edges
cad Dt Sciences S|l Trailing Edges
r J Finge Top Edges
3= Bottom Edges
Horizontal Centers
H Vertical Centers

1 First Baselines

5 Horizontally in Container

oo o &b

1 Vertically in Container

Add 1 Constraint

ro Max (+C R} 2B b ol

Figure 5.16: We are now adding
constraints to one of the labels.

All you need to do is click on the play button on the top

left-hand side of the Xcode window. This will launch an

iPhone simulator. First you will see the splash screen we

Clicking on the play button in
Xcode will launch an iPhone

simulator where our app will run!

just created, and then, once the app starts you will see the

message “Hello World” in the best style of first programmes

in any programming language. The screens will look similar

to those in Figure 5.17.

As you can see, it is possible to create the look-and-feel of

the application using the so-called Interface Builder, where

we can drag and drop windows, buttons, labels, and more.

The caveat is that the functionality for each of these objects

needs to be developed independently using the Model-View-

Controller pattern.

Covering the Model-View-Controller pattern is out of the

scope of this book. However, we are going to use the

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 341

Boston Pricer

Advanced Data Science and Analylics
with Python

Dr J Rogel-Salazar

SwiftUl which is a toolkit that enables us to build our apps
in a declarative manner. We can also drag-and-drop
components and the framework supports previews of our
design without having to launch the simulator. Furthermore,
the declarative nature of the framework means that we do
let the operating system take care of the state of the objects

and even their location in the canvas.

We mentioned at the beginning of this section that some
autogenerated code is shown when creating our project.
It is this code the one that is responsible for displaying
the “Hello World” message as seen on the right-hand side
of Figure 5.17. We can see this code by clicking on the

ContentView.Swift file on the Project Navigator on left-

Hello Ward

Figure 5.17: Running our app

up until this point will show the
splash page created, followed by
the “Hello Word” message shown
in all its glory.

SwiftUI will actually make a lot of

us Pythonistas feel more at home.

The autogenerated code we
mentioned before is responsible

for the “Hello World” message.

342 J. ROGEL-SALAZAR

hand side of our screen. You will see an editor similar to
the one shown in Figure 5.18. If you cannot see a preview of
the app, make sure you click on the Resume button on the

canvas view.

Qo GECD B R< Y| BostoaPrices | | Boston@icer § o Conlentviewswilt) Mo Selection

¥ GostonPricer Fes
¥ | BostonPricar 2/ ContentView.swift
ABDDEl2gate Swilt /¢ BostonPricer ‘

+| SreraDoogoto.swift

Contantview swirt s // Crested by Jesus Rogel an B9/18/2819.
/! Copyright = 2819 Jesus Raogel. All rights reserved.

Anzets.

Launcnserean,:

wnryhaacd &

Infa.glist

impart SwiftUl

B 1 Prevaw Contant

¥ Products i e
struct ContentVWiew: View {

var body: some View {

Text("Hello World"} e

<, Rostabricerapp

H

‘“‘__; " — ik
struct ContentView Previews! PreviewProvider {
static var previews: some View {
ContentView()

'
r
Figure 5.18: The autogenerated
code that prints “Hello World” to
the screen can be found in the
Let us change the text of the autogenerated code from ContentView.Swift file.

“Hello World” to “Boston Pricer”. We can also add some
formatting to the label by making the font title size and

centring the text:

struct ContentView: View { Swift
var body: some View {
Text(‘‘Boston Pricer’’).font(.largeTitle)

.multilineTextAlignment(.center) }

You can actually make the attribute modifications in the
preview. Command-click on the label and select “Show

SwiftUI Inspector”. There you can select the font and

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 343

alignment; the code in the editor will change automatically

(see Figure 5.19).

We need to ensure that the different objects we add to our
interface are part of a navigation view. Also, since we are
letting the operating system organise these objects, we need
to ensure they are contained in either horizontal or vertical
stacks. For that, Swift lets us create VStack and HStack
objects, respectively. We can create a NavigationView with a

vertical stack, or VStack, containing our text label:

struct ContentView: View {
var body: some View {
NavigationView {
VStack {
Text(‘‘Boston Pricer’’)
.font(.largeTitle)

.multilineTextAlignment(.center) }

We will start placing a few other objects in our app. Some
of these objects will be used simply to display text (labels
and information), whereas others will be used to create
interactions. In particular, we are interested in letting our
users select input values and generate a prediction. In
this case we will start by adding a couple of labels in a
horizontal stack (HStack) and a button. After the line of
code starting with .multilineTextAlignment, type the

following code:

Boston Pricer

Maodifiers

Font

Fani Large Title E

Weight Inheritad | <]

Colar Inherited é
aigament = =l = | &

ine Limit
I Boston Pricer I

Figure 5.19: The attributes can be
changed in the preview.

Swift

We are adding objects in a
horizontal stack, or HStack.

344 J. ROGEL-SALAZAR

HStack { Swift
Text(‘‘Crime Rate’’).padding(.trailing, 40)

Text(‘‘No. Rooms’’).padding(.leading, 40)

Spacer()

Boston Pricer

Crime Rate Mo. Reams

Button(action: {}) {

Text('‘Get Prediction’’)

Spacer()

The horizontal stack creates two labels side-by-side, one
with the text “Crime Rate” and the other one with “No.

Rooms”. The button has the label “Get Prediction” and

thanks to the use of Spacer() the layout of the app is

Figure 5.20: The app layout is

handled with ease by the operating system and in any automatically handled with

screen size required. See Figure 5.20. SwiftUL

5.4.2 Push My Buttons: Adding Functionality

WE NOW HAVE A NICE looking app. If we were to run the

simulator with the code we have, things will work. However,

nothing will happen. We need to add functionality to our

objects. In this case we only expect the user to tap on the We need to add functionality to
our app.

button to trigger an action. This eventually will show the
prediction for the property price with the attributes selected.
First, let us make sure that we can add an action to the

button such that when it is tapped it displays a message.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 345

Before we delve into the code, let us talk about states.
Consider a real object such as a lightswitch that is used to
turn the lights on and off in a room. The switch may have
an indicator for on and off. The state of the room is such
that it is illuminated when the switch is in the on position,
and it is plunged into darkness when the switch is in the off

position. The actions of the person in the room can change

the state of the room by changing the position of the switch.

Furthermore, the state of the room can also be changed by
other circumstances such as the time of day, the number of
people in the room, the temperature of the room, etc. We
refer to these variables as state variables and all possible
combinations of every possible value for the state variables

is referred to as the state space.

The state space of our current app is the equivalent of the

on and off switch. There are two states:

1. The screen shown before the user presses the button. This

is shown in Figure 5.20.

2. A pop-up message after the user hits the button. When

the user dismisses the message, we revert back to state 1.

We need a state variable to keep track of the two states
mentioned above. In this case a Boolean will suffice. We
declare a state variable in SwiftUI with @State. At the
top of the code in the content view, make the following

modifications:

Bear with me... we will get there.

The state of illumination in a room
is controlled by a variable state

that takes the values on or off.

Our app also has two states:
before and after pressing the

button.

A state variable is declared with
@State in Swift.

346 J. ROGEL-SALAZAR

struct ContentView: View {
@State var popUpVisible: Bool = false

var body: some View {

We are declaring a Boolean state variable called
popUpVisible and assign it the value of false. We can now
tell our app to change its state when the user presses the
button. To that end, let us make the following changes to

the button we implemented before:

Button(action: {
self.popUpVisible = true

Ao
Text(’‘Get Prediction’’)

}

.alert(isPresented: self.$popUpVisible) {
Alert(title: Text(‘‘Prediction’’),

message: Text(‘‘Prediction will be
shown here.’'’),

dismissButton: .default(Text(‘‘Cool!’’)))

The first thing to note is the addition of a line in the action
for the button. In this case we assign the value of true when
the user presses the button. After the label of the button, we
are also adding a few lines of code. The alert() method of
the button will present a popup alert to the user. The title
is the bold title of the window; the message displayed is

handled by message and importantly the dismissButton is

Swift

Swift

An alert takes a title, a message
and an action for when the alert is

dismissed.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 347

a button that dismisses the window when the user is done.

The result of pressing the button can be seen in Figure 5.21.

5.4.3 Being Picky: The Picker View

WE NEED TO PROVIDE OUR users with an easy way to pick
the attributes of the property they need to value. Currently
our app contains three labels and one button. We need to
add a couple of pickers, one for the crime rate score and

another one for the number of rooms.

Let us start creating constants to hold the potential values

for the input variables. At the top of the ContentView struct

make the following changes:

struct ContentView: View {
let crimeData = Array(stride(from: 0.05,
through: 3.7, by: 0.1))
let roomData = Array(4...9)
@State var popUpVisible: Bool = false

These values are informed by the data exploration we
carried out in Section 5.3.3 earlier on. We are going to
use the arrays defined above to populate the values that
will be shown in our pickers. For this we need to define

a data source for each picker as well as a state variable.
Right below the definition of the constants crimeData and

roomData, let us add the following state variables:

Boston Pricer

Crirme Rate Mo, Rearms

Prediction

Erechction mill kst shimn hata

Figure 5.21: The app state after
pressing the button.

Swift

The modifier let declares

constants in Swift.

Crime from 0.05 to 3.65 in steps of

0.1, and Rooms from 4 to 9.

348 J. ROGEL-SALAZAR

@State var pickerCrime = 0

@State var pickerRoom = 0

Let us now add a couple of pickers. In the NavigationView,
between the “Boston Pricer” title and the button, remove the
HStack with the two labels and replace it with the following

VStack. The result will be similar to the one in Figure 5.22.

VStack {

Picker(selection: .constant(1l),
label: Text(‘'‘Crime’’)) {
Text(*‘1’").tag(1)
Text(“‘2"'").tag(2)

}

.padding(.leading, 10)
Picker(selection: .constant(1),
label: Text(‘‘No. Rooms’’')) {
Text(‘‘1"").tag(1l)
Text(‘‘2"").tag(2)

.padding(.leading, 10)

Currently the pickers have the values 1 and 2 but what we
really want is to show the values from the constants we

defined above. Let us look at the Crime Rate picker first:

Swift

Swift

Boston Pricer

Crime

Figure 5.22: Adding a couple of
pickers to our app.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 349

Picker(selection: $pickerCrime, .
Swift
label: Text(‘‘Crime’’)) {
ForEach(0..<crimeData.count) { ix in
Text(‘‘\(self.crimeDatal[ix],

specifier: “'%.2f'")’’").tag(ix)

Boston Pricer

We are first specifying that the variable state pickerCrime is
used in this picker’s selection. The content of the picker is
then given by each of the indexed entries in the crimeData
array. We need to convert the doubles into text. We do

this by string interpolation by enclosing the name of the
variable between “\(...)". Think of this operation as a

substitution of the variable value. Finally, we specify that we

only require two decimal points with the formatter “%.2f".
Figure 5.23: The pickers are now

. . showing the correct values we
Let us now change the second picker to show valid values specified.

for the number of rooms:

Picker(selection: $pickerRoom, Swift
label: Text(‘‘No. Rooms’’)) {
ForEach(0..<roomData.count) { ix in

Text(‘‘\(self.roomDatal[ix]’'').tag(ix)

In this case we simply convert the integers into text, as there
is no need to specify a format for these strings. The result of

the code above can be seen in Figure 5.23.

350 J. ROGEL-SALAZAR

We can check that the state variables are indeed capturing Let us check that we can capture
the state of the app. Let us change the alert shown by the the current state of the app.
button so that it shows the values picked by the user. At

this stage, we are not going to worry about formatting the

value of our double array crimeData. Modify the button

implementation as follows:

Button(action: { Swift
self.popUpVisible = true
Ao
Text("Get Prediction")

}
.alert(isPresented: self.$popUpVisible) {

Boston Pricer

Alert(title: Text(‘‘Prediction’’),

message: Text(‘‘The values picked are\n it

Tre vakume picked e
Crime Rate: DG50000
Roams: &

Crime Rate: \(crimeData[pickerCrimel)\n
Rooms: \(roomData[pickerRoom])’’),

dismissButton: .default(Text(‘‘Cool!’’)))

}.padding()

The result can be seen in Figure 5.24. It is now time to bring

the model into our app. Ready?

Figure 5.24: We can see that the

. . app is capturing the correct state
5.4.4 Model Behaviour: Core ML + SwiftUI fcl)orpthe piIZkers.g

LOOK HOW FAR WE HAVE come... We started this chapter
looking at what Core ML does and how we can use the
tools provided by Apple to translate our Python models. In
this case we decided to use linear regression as our model,
and chose to use the Boston Price dataset in our exploration

for this implementation. We built our model using Python

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 351

and created our .mlmodel object. We have put together

an app that can be run in an iPhone and we are ready to
include our Core ML model in our Xcode project. The aim is
to use the inputs selected from our pickers and calculate a
prediction based on our model and display the result to our

users.

Let us start by adding the .mlmodel we created earlier on so
that it is an available resource in our project. In the Xcode
project navigator, select the “BostonPricer” folder. At the
bottom of the window you will see a plus (+) sign, click on
it and select “New Group” (see Figure 5.25). This will create
a sub-folder within “BostonPricer”. Select the new folder
and hit the return key, this will let you rename the folder to
something more useful. In this case we are going to call this

folder “Resources”.

Choose options for adding these files:

Destination: E2 Copy items if needed

Added folders: Create groups
° Craate folder references

Add to targets: % BostonPricer

Cancel

In your Mac, open Finder, and navigate to the location of

the PriceBoston.mlmodel we created earlier on. Drag the

Perhaps we may want to refer to

our prediction as a valuation?

v BostanPricer
AppDelegate.swift
SceneDelegate.swift
ContentWiew.swift
Assets xcassets
LaunchScreen.storyboard
Info.plist

» Preview Content

¥ . Products

File...

Mew G}{)up without Folder

Add pHes 1o "BostonPricer”..

' o

Figure 5.25: Adding a New Group
to our project.

Figure 5.26: Adding resources to
our Xcode project.

352 J. ROGEL-SALAZAR

file inside the “Resources” folder. This will open a dialogue
box asking for some options for adding this file to our
project (see Figure 5.26). Leave selected the “Create Folder
References”; make sure that you copy the items as needed.
Click on the “Finish” button and you will see the model

now being part of the project.

Go to the code in the Content View where we are going to
make a few changes. The first change is to tell our project
that we are going to need the powers of the Core ML

framework. At the top of the file, locate a line of code that

imports SwiftUI, right below it type the following:

import CoreML

Inside the definition of the ContentView struct, let us define
a constant to reference the model. Look for the declarations
of the crimeData and roomData constants and next to them

type the following;:

let model = PriceBoston()

You will see that when you start typing the name of the
model, Xcode will suggest the right name as it knows about

the existence of the model as part of its resources, neat!

We are now going to create a method that is able to read the
values selected by the user for the crime rate and number
of rooms pickers. These values will be used to calculate a
valuation. Our method will return a string containing the
predicted price. After the NavigationView code enter the

following:

It is a good idea to keep our
Xcode project tidy with the help of

groups.

Swift

We need to instantiate a our
model, just like we have done in
Python.

Swift

As Xcode now knows about our
model, autocomplete is available
for it.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 353

var body: some View {

NavigationView{...}

func predictionMsg() -> String {

let crime crimeData[pickerCrime]

let rooms Double(roomData[pickerRoom])
guard let PriceBoston = try? model.prediction(
crime: crime, rooms: rooms) else {

fatalError(‘‘Unexpected runtime error.’'’)

let price = String(format: ‘‘%.2f"'’,
PriceBoston.pricex1000)

let Msg = ‘‘Your property value is\n $\(price)’’

return Msg

Note that in the code above we have collapsed the
NavigationView for ease of clarity. Our method is called
predictionMsg and it returns a string. First it reads the
values of the pickers and assigns them to two constants
crime and rooms. These are the input names expected by

our model, remember?

In Section 5.3.5 we saw that our PriceBoston class has a

prediction(crime:rooms:) method used to predict the

median value of a property from the model’s input values.

Swift

We are collapsing the
NavigationView view code to
be clear about where the changes

need to be placed.

The model has a .prediction
method to calculate our

prediction.

Finally, we format our result to be

ready for display.

Notice that we have cast the rooms

constant as a double.

354 J. ROGEL-SALAZAR

The result of this method is assigned in the code above to

a PriceBoston output instance. The price property of this That is the line starting with
instance is used to get the prediction. We know that the guard.
values are in thousands of dollars and that is why we are
multiplying the predicted value by 1000 before using it in a

string to be returned by the function.

Boston Pricer Boston Pricer

Property Valuation
Yaur arcaerty weluz is
$20732.31

Figure 5.27: The final app

We can now run our app with the simulator and the result producing predictions for our
users out of a linear regression

will be a fully functional model, first developed in Python, model first developed with
Python.

producing predictions in the hands of our users through an
iOS app. See Figure 5.27 to get an idea of what to expect,

and the final version of the app is available in GitHub™". 1 Rogel-Salazar, |

(2017). Boston Pricer.

https:/ /github.com/rogelj/coreml_boston.
Accessed: 2019-10-23

There are many more things that we can do to improve

the app. For instance, we can test that the layout works for

https://github.com

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON

a variety of screen sizes. Also, having a picker may be a

bit cumbersome for some of the inputs, perhaps a stepper
would be more appropriate. Another important aspect

in the experience that we want to give to our users is the
overall look-and-feel and usability for the app. This includes
the design of appropriate icons in various sizes. You can
now enroll a test device to run your application and use
the app as intended, in a mobile device. You can find more

information about that in the Apple Developers site'>. 2 Apple Inc. (2019a).
Apple Developer.
https://developer.apple.com.

Accessed: 2019-10-23
5.5 Summary

As WE SAID AT THE beginning of this chapter, we have
indeed covered a lot of ground. And yet, there are still quite
a few areas that we can explore in a deeper way. There are
also many more subjects we have not touched on at all. In
this last chapter we have looked into the perennial issue

of bringing our models, predictions and solutions to our

customers, users and stakeholders.

We provided a working definition for a data product as

one that meets the needs, wants and/or requirements of
our users through the use of data. We saw that it is of
particular importance to take into account any development
considerations around data. This may include things such
as its availability, processing, meaning and understanding,
to name a few. We also need to include in our development
cycles the usage of data science techniques, going beyond

data analysis.

355

https://developer.apple.com

356 J. ROGEL-SALAZAR

We have also explored the complexity of data products:
Ranging from raw data and algorithms through to
automated decision making. The vast majority of our
discussions before this chapter have been centred around
the usage of data, and data science techniques, by Jackalope
data scientists. In this chapter we were actually interested in
bringing the fruit of our efforts to a non-technical audience
too. To that end we explored the requirements of a
multi-functional team including the need, not just for data
scientists, but also data architects, engineers, product

managers and subject matter experts.

As a way to bring our trained models to our potential users,
in this chapter we looked at building an application that can
be deployed in a mobile device. In this case we have chosen
to explore the Apple ecosystem including Xcode, Swift and
Core ML. We saw how Core ML offers us Pythonistas a
way to convert our trained models into a format that can be
integrated within an app, and be brought to the hands of
our users. Core ML tools enable us to translate a Scikit-learn
model into the .mlmodel format used by the iOS and MacOS

applications we intend to develop.

In this case we used a well-known dataset to make
predictions of the mean value of a property in the Boston
area (in the 1970s). In order to keep our discussion
manageable for the scope of the chapter, we used a linear
regression model, covering the different stages of the data
science workflow: From data understanding to exploration,

model training and testing and finally deployment.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON

Although the book has been primarily dedicated to the use
of Python in the practice of data science, in this chapter

we made reference to Swift. The intention was not to do

a comprehensive coverage of this programming language.
The hope, however, was that the snippets of code used are
easy enough to understand the gist of the language. We
covered the usage of the SwiftU framework, which gives us
the opportunity to add programmatically new elements to
our application, while letting the operating system handle
not only the location of the elements, but also track the state

space of the application.

We finished this chapter by incorporating our Core ML
model into the app, letting the user provide input values
for the features used in the model to make a prediction. As
we noted in the previous volume of this book, there is no
such a thing as a perfect model, only good enough ones, and thus
the model we present to our users may not be the one and
only model we develop, tweak, improve and supersede. We
can continue using anthropomorphic language to refer to
models that learn, see, understand and recognise, but we will
not be able to disguise the fact that mathematics, statistics
and software development sit at the heart of our efforts.
Enabling those efforts has been the intention of this, and its

companion, book.

Enjoy!

357

Taylor & Francis

Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

A

Information Criteria

IN OUR TIME SERIES DISCUSSION in Chapter 1 we mentioned
our interest in determining the current value of a series
based on the past observations. We saw a few models that
can be used, and in many cases it involves how many lag
terms we need to include. The coefficients of these terms
provide us with information about the effects of the past in

predicting future values.

When adding more terms we are effectively gaining
information, but inevitably at the same time we make our
model more complex. In order to balance this dichotomy, in
many other cases we use regularisation. Various
information criteria help us with this regularisation task by
balancing the information gained by including additional

lag terms versus increasing the complexity of our model.

Some of the most frequently used information criteria

include the Akaike information criterion or AIC?, the * Akaike, H. (1969). Fitting
. . . . autoregressive models for
Bayesian—sometimes referred to as Schwarz—information prediction. Annals of the Institute of

Statistical Mathematics 2(1), 243—247

360 J. ROGEL-SALAZAR

criterion (BIC)?, or the Hannan and Quinn information

criterion (HQIC)3.

In general, the information criteria mentioned above have

the form:

k
ICy = log &2 + Z " (A1)

where 0y, is the standard deviation to be estimated when k
parameters are to be determined, and # is the number of
observations. The first term in the expression above is the
goodness-of-fit, which is to be balanced with the second
term which effectively measures the complexity of the
model. For each of the information criteria, the coefficient in

this penalty term takes the form:

2, for AIC.
Pn = 4 logn, for BIC. (A.2)
2loglogn, for HQIC.

In each case, the aim is to find the model with the lowest

value of the selected information criterion.

*Schwarz, G. (1978). Estimating
the dimension of a model. The
Annals of Statistics 6(2), 461-464

3 Hannan, E.J. and Quinn, B. G.
(1979). The determination of the
order of an autoregression. Journal
of the Royal Statistical Society, Series

B 41, 190-195

B

Power Iteration

Let A be an n x n matrix. We start with an arbitrary initial
[e0)

vector x(9) and we form the the vector sequence {x(k) }kfo
by defining:

xB) = Axk=1) "} =1,2,... (B.1)

It is clear from the expression above that:

xk) = Akx(0), (B.2)

The main idea behind power iteration is that x(*) will
converge to an eigenvector associated with the eigenvalue of

the largest magnitude.

In general, we are interested only in the direction, not
necessarily in the length, of the eigenvector. In practical
terms, it is best practice to include a normalisation step to
Equation (B.1). This leads us to the power iteration

algorithm as follows:

362 J. ROGEL-SALAZAR

1. Start with a vector x() with [|x(0|| =1
2. k=0

3. repeat

4. k=k+1

5. y®) = Ax(k-1)

6. me=lly®|

7. x) =y ® /p

8. until a convergence criterion is satisfied.

All the vectors x(¥) generated by the algorithm have a norm
equal to one. In other words, {x(k) }w is a sequence on the

unit sphere in n dimensions.

C

The Softmax Function and Its Derivative

WE HAVE ENCOUNTERED THE SOFTMAX function in Chapter
4 and given its importance in the context of activation
functions for neural networks, we would like to cover some
information related to its characteristics, including its

derivative.

The softmax function is a generalisation of the sigmoid
function. It takes real values as input and maps them to a
probability distribution where entry is in the range (0, 1].
Furthermore, all the entries add up to 1. We know from

Chapter 4 that the function is given by:

softmax(z;) = o(z;) = ZNGXP(Ziz), fori=1,...,k. (Cu1)
1 exp(zk

We can see that o(z;) is always positive and is bounded
between 0 and 1. If we were to evaluate the function for
the elements [0, 1,2, 3,4] we have that the function will
return the values [0.0116562,0.0316849, 0.0861285, 0.2341216,
0.6364086] which add up to 1. In other words, with this

364 J. ROGEL-SALAZAR

function we find a “soft” version of the maximum, where
the maximal input gets a proportionally large contribution

compared to the other elements, but all getting part of it.

The characteristics of the function are such that it is suitable
to be used for probabilistic interpretation. In cases where
we have multiple classes, we can use the function to assign

probabilities for an input to belong to each of the classes.

In the context of activation functions in neural networks, the
softmax function plays an important role, particularly in the
output layer and as such we require its derivative so that we
can perform backpropagation. The derivative of the softmax

function is therefore expressed as:

0!
aa(z,-) .):Il(\lzl ek
82]- = sz . (C.2)

We can apply the quotient rule to the expression above such

that g =e% and h = 2{(\]:1 e“k and thus:

9¢%i N z z: 0 N z
90 (z;) 0z; Li—je*—e "oz (Zk:l e k)
0z = 2
] (25:1 ez">
ae”i zvN 9 2
5z € =1 55,
- N . 2

Y €%k N

Z‘tk_l <Zk:1 ezk)

% % %

g lec\[:l e 25:1 ek lec\]:1 ek
(C3)

= o(z) (6 —0o(z)) (C.4)

where J;; is the Kronecker delta function.

It is bounded between 0 and 1 and
the values add up to 1.

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 365

C.1 Numerical Stability

WHEN IMPLEMENTING COMPUTATION FOR THE softmax
function, we need to take into account the presence of
numerical instability for large input values. This is related
to the calculation of exponential functions involved in the

definition of softmax.

Normalisation of the inputs can be achieved with the

introduction of an arbitrary constant C as follows:

eXp(Zl’> _ CeXp(Zi) (CS)

o(zi) = YN Jexp(z) TN, Cexp(z)

Using the properties of the exponential function, we are able
to write the expression above as:

exp(z; +log C)
Z?’Zl exp(zx +log C)

where log C is still an arbitrary constant we can choose. One
option is — max(z, 2, . .., z;| which has the effect of shifting

the inputs to a range close to zero.

Taylor & Francis

Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

D
The Derivative of the Cross-Entropy Loss

Function

GIVEN THE CROSS-ENTROPY LOSS function:
L=-) yilogy=—) yilogo(z), (D.1)
i

where 0(z;) is the softmax function, we want to obtain the

derivative of with respect to the parameter z;.

oL dlogo(z)

Y

-] 1 aU(Zl’)
Zyl(]'(zi) aZ] (DZ)

We need to calculate the derivative of the softmax function,

and information about this can be seen in Appendix C.

368 J. ROGEL-SALAZAR

There are two cases, one for i = j and the other for i # j:

oL
— = —yi(l-o(z ,
aZ]']/z %yl (l)

= —yi+yio(z)+ Z]/#T(Z])
i#]

= 2.’/1 yi = 0(zi) — yi, (D.3)

as)yi = 1.

Bibliography

ACE 2004 Multilingual Training Corpus.
https:/ /catalog.ldc.upenn.edu/ LDC2005To9.

Address Before a Joint Session of the Congress. Barack
Obama. 44th President of the United States: 2009-2017.
https:/ /www.presidency.ucsb.edu/ node/286218.

Beautiful Soup. https://www.crummy.com/

software/BeautifulSoup/.
Chardet. https://chardet.readthedocs.io.
Cursive Re. https:/ /github.com/Bogdanp/ cursive_re.

re - Regular expression operations.

https:/ /docs.python.org/3.6/ library/re.html.
Scrapy. https://scrapy.org.
spaCy. https://spacy.io.

Unicode 11.0. http://www.unicode.org/

versions/Unicode11.0.0/.

Abadi, M. et al. (2015). TensorFlow: Large-scale machine
learning on heterogeneous systems. http:/ /tensorflow.org/.

Software available from tensorflow.org.

http://tensorflow.org
http://www.unicode.org
https://www.crummy.com
http://tensorflow.org
http://www.unicode.org
https://spacy.io
https://scrapy.org
https://docs.python.org
https://github.com
https://chardet.readthedocs.io
https://www.crummy.com
https://www.presidency.ucsb.edu
https://catalog.ldc.upenn.edu

370 J. ROGEL-SALAZAR

Akaike, H. (1969). Fitting autoregressive models
for prediction. Annals of the Institute of Statistical
Mathematics 2(1), 243—247.

Al-Rfou, R. et al. (2016, May). Theano: A Python framework
for fast computation of mathematical expressions. arXiv

e-prints abs/1605.02688.

Apache Airflow (2014). Apache Airflow Documentation.
https:/ /airflow.apache.org. Accessed: 2019-09-30.

Apple Inc. (2014). Swift programming language. https:
//swift.org.

Apple Inc. (2017a). Core ML. https://developer.apple.com/

documentation/coreml. Accessed: 2019-10-01.

Apple Inc. (2017b). Core ML tools.
https:/ /github.com/apple/coremltools. Accessed: 2019-

10-01.

Apple Inc. (2019a). Apple Developer.
https:/ /developer.apple.com. Accessed: 2019-10-23.

Apple Inc. (2019b). Core ML. https://developer.apple.com/

documentation/createml. Accessed: 2019-10-01.

Archer, S. (2017). Apple hits a record high after crushing
earnings (AAPL). http://markets.businessinsider.com
/news/stocks/apple-stock-price- record-high-after-

crushing-earnings -2017-8-100222647. Accessed: 2018-05-01.

Ball, WW.R. and Coxeter, H.S.M. (1987). Mathematical
Recreations and Essays. Dover Recreational Math Series.

Dover Publications.

http://markets.businessinsider.com
http://markets.businessinsider.com
https://developer.apple.com
https://developer.apple.com
https://swift.org
https://swift.org
http://markets.businessinsider.com
https://developer.apple.com
https://developer.apple.com
https://github.com
https://developer.apple.com
https://airflow.apache.org

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON

Bapat, R., R. Bapat, T. Raghavan, C. U. Press, T. S, G. Rota,
B. Doran, P. Flajolet, M. Ismail, T. Lam, et al. (1997).
Nonnegative Matrices and Applications. Encyclopedia of
Mathematics and its Applications. Cambridge University

Press.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent

Dirichlet Allocation. Journal of Machine Learning Research 3,

993-1022.

Box, G. and G. Jenkins (1976). Time series analysis: forecasting
and control. Holden-Day series in time series analysis and

digital processing. Holden-Day.

Butler, S. (2005). Erewhon; Or, Over the Range. Project
Gutenberg https:/ /www.gutenberg.org/ebooks/1906.

Accessed: 2019-09-03.

Carroll, L. and J. Tenniel (1897). Through the Looking Glass:
And what Alice Found There. Altemus’ illustrated young
people’s library. Henry Altemus Company.

Chen, T. et al. (2014). CMXNet: A Flexible and Efficient
Machine Learning Library for Heterogeneous Distributed

Systems. arXiv preprint arXiv:1512.01274.

Cho, K., B. van Merrienboer, et al. (2014). Learning phrase
representations using RNN encoder-decoder for statistical

machine translation. CoRR abs/1406.1078.

Chollet, F. et al. (2015). Keras. https://github.com/
fchollet/keras.

Continuum Analytics (2014). Anaconda 2.1.0. https:

//store.continuum.io/cshop/anaconda/.

371

https://store.continuum.io
https://store.continuum.io
https://github.com
https://github.com
https://www.gutenberg.org

372 J. ROGEL-SALAZAR

Euler, L. (1736). Solutio problematis ad geometriam situs

pertinentis. Comment. Acad. Sci. U. Petrop. 8, 128-140.

Fagles, R. (1997). The Odyssey. A Penguin Book. Penguin
Books.

Fortunato, S. (2010). Community detection in graphs. Phys.

Rep. 486(3-5), 75-174.

Gabasova, E. (2016). Star Wars social network.

https:/ /doi.org/10.5281/ zenodo.1411479.

Girvan, M. and Newman, M.E.J (2002). Community structure
in social and biological networks. Proc. Natl. Acad. Sci.
USA 99, 7821-7826.

Github (2018). CNTK: The microsoft cognitive tool.
https:/ /github.com/Microsoft/CNTK/. Accessed: 2018-
08-13.

Glenberg, A.M. (1997). What memory is for. Behav. Brain

Sci. 20, 1-55.

Grandjean, M. (2016). A social network analysis of Twitter:
Mapping the digital humanities community. Cogent Arts

and Humanities 3, 1-14.

Greff, K., Srivastava, R. K., Koutnik, J., et al. (2017). LSTM:
A Search Space Odyssey. IEEE Trans. Neural Netw. and

Learning Sys. 28(10), 2222-2232.

Hannan, E.J. and Quinn, B. G. (1979). The determination of
the order of an autoregression. Journal of the Royal Statistical

Society, Series B 41, 190-195.

https://github.com
https://doi.org/10.5281/zenodo.1411479

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON

Harrison, D. and D. Rubinfeld (1978). Hedonic prices
and the demand for clean air. J. Environ. Economics and

Management 5, 81-102.

Hinton, G. E. and R. Salakhutdinov (2006). Reducing the

dimensionality of data with neural networks. Science 313

5786, 504-7.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A
Fast Learning Algorithm for Deep Belief Nets. Neural
Computation 18, 1527-1554.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural. Comput. 9(8), 1735-1780.

Ioffe, S. and C. Szegedy (2015). Batch normalization:
Accelerating deep network training by reducing internal

covariate shift. CoRR abs/1502.03167.

Jia, Y. et al. (2014). Caffe: Convolutional Architecture for Fast

Feature Embedding. arXiv preprint arXiv:1408.5093.

Karinthy, F. (1929). Chains in Everything is Different.
Online at http:/ /bit.ly /karinthy_chains. Translated
from Hungarian and annotated by Adam Makkai. Edited
by E Janké.

Karpathy, A. (2015). The Unreasonable
Effectiveness of Recurrent Neural Networks.
https:/ /karpathy.github.io/2015/05/21/1rnn-

effectiveness/. Accessed: 2019-09-09.

Kingma, D. P. and J. Ba (2014). Adam: A method for
stochastic optimization. arxXiv:1412.6980. Comment:

Published as a conference paper at the 3rd International

373

https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://bit.ly

374 J. ROGEL-SALAZAR

Conference for Learning Representations, San Diego,

2015.

Krizhevsky, A. (2009). Learning multiple layers of features

from tiny images. Technical report.

LeCun, Y., Boser, B., Denker, J. S., et al. (1989).
Backpropagation applied to handwritten zip code
recognition. Neural Computation 1(4), 541-551.

Masters, D. and C. Luschi (2018). Revisiting Small Batch
Training for Deep Neural Networks. Computing Research

Repository http://arxiv.org/abs/1804.07612.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus

of the ideas immanent in nervous activity. Bull. of Math.
Biophysics 5(4), 115-133.

McKinney, W. (2012). Python for Data Analysis: Data Wrangling
with Pandas, NumPy, and IPython. O’Reilly Media.

McKinney, W. (2011). pandas: a foundational python
library for data analysis and statistics. Python for High
Performance and Scientific Computing: O’Reilly Media,

Inc.

Mikolov, T., I. Sutskever, et al. (2013). Distributed
Representations of Words and Phrases and Their
Compositionality. In Proceedings of the 26th International
Conference on Neural Information Processing Systems -
Volume 2, NIPS'13, USA, pp. 3111-3119. Curran Associates

Inc.

Milgram, S. (1967). The small world problem. Psych.
Today 1(1), 60-67.

http://arxiv.org/abs/1804.07612

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON

Minsky, M., S. Papert, and L. Bottou (2017). Perceptrons: An
Introduction to Computational Geometry. The MIT Press. MIT

Press.

Moody, J. and White, D. (2003). Social cohesion and
embeddedness: A hierarchical conception of social groups.
Am. Soc. Rev. 68(1), 103—128.

Noichl, M. (2017). Relationships between Philosophers,
600 b.c - 160 b.c. https://homepage.univie.ac.at/
noichlmgy/full/Greeks/index.html. Accessed: 2019-

02-18.

Papachristou, N. et al. (2019). Network Analysis of the
Multidimensional Symptom Experience of Oncology.

Scientific Reports 9(1), 2258.

Paszke, A. et al. (2017). Automatic differentiation in PyTorch.
In NIPS Autodiff Workshop.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, et al.
(2011). Scikit-learn: Machine learning in Python. Journal of

Machine Learning Research 12, 2825-2830.

Press, W., S. Teukolsky, W. Vetterling, and B. Flannery
(2007). Numerical Recipes 3rd Edition: The Art of Scientific
Computing. Cambridge University Press.

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000).
Inference of population structure using multilocus

genotype data. Genetics 155(2), 945-956.

Python Software Foundation (1995). Python reference
manual. http://www.python.org.

375

https://homepage.univie.ac.at
http://www.python.org
https://homepage.univie.ac.at

376 J. ROGEL-SALAZAR

Rehtitek, R. and P. Sojka (2010, May). Software Framework
for Topic Modelling with Large Corpora. In Proceedings
of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, Valletta, Malta, pp. 45-50. ELRA. http:
//is.muni.cz/publication/884893/en.

Reitz, K. Requests - http for humans. http://docs.python-

requests.org/en/master/.

Rogel-Salazar, J. (2016, Jan). Data Science Tweets.

https:/ /doi.org/10.6084/ mg.figshare.2062551.v1.

Rogel-Salazar, J. (2018a, May). Apple Inc
Prices Apr 2017 - Apr 2018. https://doi.org
/10.6084/mog.figshare.6339830.v1.

Rogel-Salazar, J. (2018b, Jun). Bitcoin/USD
exchange rate Mar 31-Apr 3, 2016. https://doi.org
/10.6084/myg.figshare.6452831.v1.

Rogel-Salazar, J. (2018¢, Sep). Iris Webpage. https://doi.org
/10.6084/mog.figshare.7053392.v4.

Rogel-Salazar, J. (2018d, Jul). Sunspots -
Monthly Activity since 1749. https://doi.org
/10.6084/mog.figshare.6728255.v1.

Rogel-Salazar, J. (2019a, Apr). Star Wars Network.
https:/ /doi.org/10.6084/ mg.figshare.7993292.v1.

Rogel-Salazar, J. (2019b, Aug). Neural Network - Observation
dataset. https://doi.org/10.6084/ mg.figshare.9249074.v1.

Rogel-Salazar, J. (2019¢, Apr). Zachary’s karate club.
https:/ /doi.org/10.6084/ mg.figshare.7985174.v1.

https://doi.org/10.6084/m9.figshare.6728255.v1
https://doi.org/10.6084/m9.figshare.7053392.v4
https://doi.org/10.6084/m9.figshare.6452831.v1
https://doi.org/10.6084/m9.figshare.6339830.v1
https://doi.org/10.6084/m9.figshare.7985174.v1
https://doi.org/10.6084/m9.figshare.9249074.v1
https://doi.org/10.6084/m9.figshare.7993292.v1
https://doi.org/10.6084/m9.figshare.6728255.v1
https://doi.org/10.6084/m9.figshare.7053392.v4
https://doi.org/10.6084/m9.figshare.6452831.v1
https://doi.org/10.6084/m9.figshare.6339830.v1
https://doi.org/10.6084/m9.figshare.2062551.v1
http://docs.pythonrequests.org
http://docs.pythonrequests.org

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON

Rogel-Salazar,] (2017). Boston Pricer.
https:/ / github.com/rogelj/coreml_boston. Accessed:

2019-10-23.

Rogel-Salazar, J. (2017). Data Science and Analytics with Python.
Chapman & Hall/CRC Data Mining and Knowledge
Discovery Series. CRC Press.

Rosenblatt, F. (1962). Principles of neurodynamics: perceptrons
and the theory of brain mechanisms. Report (Cornell

Aeronautical Laboratory). Spartan Books.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986).
Learning representations by back-propagating errors.

Nature 323(6088), 533-536.

Russell, A. (2014). Open Standards and the Digital Age.
Cambridge Studies in the Emerg. Cambridge University

Press.

Schuster, A. (1906). II. On the periodicities of sunspots.
Philosophical Transactions of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences 206(402-

412), 69—100.

Schwarz, G. (1978). Estimating the dimension of a model. The

Annals of Statistics 6(2), 461—464.

Scientific Computing Tools for Python (2013). NumPy.
http://www.numpy.org.

Simas, T. et al. (2017). Food-Bridging: A new network
construction to unveil the principles of cooking. Frontiers

in ICT 4, 14.

377

http://www.numpy.org
https://github.com

378 J. ROGEL-SALAZAR

Spotify (2014). Luigi. https://github.com/spotify/luigi.

Accessed: 2019-09-30.

Stellman, A. and J. Greene (2014). Learning Agile:
Understanding Scrum, XP, Lean, and Kanban. O’Reilly
Media.

Sutskever, 1., J. Martens, G. Dahl, and G. Hinton (2013, 17-19
Jun). On the importance of initialization and momentum
in deep learning. In S. Dasgupta and D. McAllester (Eds.),
Proceedings of the 30th International Conference on Machine
Learning, Volume 28 of Proceedings of Machine Learning

Research, Atlanta, Georgia, USA, pp. 1139-1147. PMLR.

van Rossum, G. (2009). Text Vs. Data Instead of Unicode
Vs. 8-bit. https://docs.python.org/release/3.0.1/

whatsnew /3.0.html.

Vincent D Blondel, Guillaume, J.-L., Lambiotte, R., and
Lefebvre, E. (2008, Oct.). Fast unfolding of communities in

large networks. J. Stat. Mech-Theory E 2008(10), P10008.

Watts, D. and Strogatz, S. (1998). Collective dynamics of
small-world networks. Nature 393(1), 440—442.

Werbos, P. (1994). The Roots of Backpropagation: From Ordered
Derivatives to Neural Networks and Political Forecasting.
Adaptive and Cognitive Dynamic Systems: Signal
Processing, Learning, Communications and Control.

Wiley.

Zachary, W. W. (1977). An information flow model for
conflict and fission in small groups. J. Anthropol. Res. 33(4),

452473

https://docs.python.org
https://docs.python.org
https://github.com

Index

Star Wars, 139, 189
C-3PO, 58
R2-D2, 58
The Force, 189

Activation function
Hyperbolic tangent, 220
Rectified linear unit (ReLU),

222
Sigmoid, 220
Softmax, 222

Agile methodology, 307

Antimatter, 5

Apache Airflow, 309

API, 60, 311

Apple, 304
Button, 344
Core ML, 309, 310, 329, 350
Core ML Converter, 326
coremltools, 322
Create ML, 312
iPhone, 304, 334
Machine Learning, 350

Picker View, 347

Swift, 331
SwiftUI, 334, 341
State, 345
Xcode, 304, 311, 332
Apple Inc., 4
AQR Capital Management, 8
Artificial intelligence, 306
Artificial neural network, see
Neural network
ASCII, 88
Autocorrelation, 32
Autoregressive integrated
moving average (ARIMA),
52
Autoregressive model, 51
Autoregressive moving averages
(ARMA), 52

Bacon, Kevin, 138
Bayes’ theorem, 112
Beautiful Soup
find_all, 71
find, 71
text, 69

Comments, 67
Navigable strings, 67
Tags, 67
Beautiful soup, 64
Bialik, Mayim, 139
Bitcoin, 25, 46
Brain, 208
Axon, 209
Dendrite, 209

Neuron, 208

Cancer, 140
Carriage return, 88
Cerveza, 57
Chain rule, 211, 237
collections
Counter, 171
Colon notation, 11
Confusion matrix, 277
Constructed language
Dothraki, 58
Elvish, 58
Esperanto, 58
Klingon, 58

380 J. ROGEL-SALAZAR

Convolution, 263

Corpus, 77

Correlation, 33
Correlogram, 51
Cross-entropy, 233, 247, 367

Cuisine, 140

Data, 4
Personality of the, 4
Data product, 304

Dataframe, 8

Deep learning, 207, 216, 254

Caffe, 255
CNTK, 255
Convolution, 263
Dense layer, 258
Dropout, 267
Feature map, 266
Keras, 255
MXNet, 255
Pooling, 267
PyTorch, 255
TensorFlow, 255
Theano, 255
Dendrogram, 184
Derivative, 235
Partial, 236
Dickey-Fuller test, 42

Dirichlet distribution, 111

Econometrics, 8
Edos, Paul, 139
Edge computing, 309
Euler, Leonhardt, 135

Fast Fourier transform, 40

Feature engineering, 230

FFT, see Fast Fourier transform

Financial time series, 3

Forecasting, 36

Generator, 70
Google, 148
GPU, 254
Gradient
Exploding, 286
Vanishing, 286
Gradient descent, 224, 226
Batch, 241
Mini-batch, 242
Stochastic, 241
Graph, 131, 141
Acyclic, 141
Adjacency list, 144, 161

Adjacency matrix, 143, 159

Arc, 132, 141
Betweenness, 146, 173
Chain, 141

Clique, 135, 183
Closed walk, 141

Closeness, 146, 175

Clustering coefficient, 151

Complete, 150
Cycle, 141

Degree centrality, 146, 168, 171

Diameter, 142
Directed, 133
Disconnected, 142
Edge, 132, 141

Edge betweenness, 153

Edge list, 144, 161
Ego network, 134
Eigenvector centrality, 147,
176
Equivalence relation, 145
Force-directed layout, 164
Geodesic path, 142
Giant component, 152
Hamiltonian cycle, 137
Homophily, 134
Node, 132
Centrality, 146
Degree, 145
Indegree, 145
Outdegree, 145
Reachable, 142
Strongly connected, 143
Weakly connected, 143
PageRank, 148, 178
Partition, 144
Path, 141
Semi-walk, 141
Shortest path, 139, 142
Small world, 137, 166
Bacon number, 138
Theory, 140
Trail, 141
Transitivity, 134
Travelling salesman, 136
Undirected, 133
Walk, 141
Weight, 143

Hamilton, William R., 137
Hawking, Stephen, 139

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON 381

Hexadecimal, 92
Hierarchical clustering, 184
Homer, 256
Hooke’s law, 164
HTML, 60

Class, 73

Information criterion, 54, 359
Akaike (AIC), 54, 359
Bayesian (BIC), 54, 359
Hannan-Quinn (HQIC), 54,

359
Internet of Things, 309
Iris dataset, 3, 64

Jackalope data scientist, 2, 7, 56,
86, 129, 148, 234

Konigsberg bridges puzzle, 135
Karaoke, 162

Karate, 162

Karinthy, Frigyes, 137

Kernel, 263

LDA

Perplexity, 115
Line feed, 88
List comprehension, 75
Log returns, 3
Loss function, 226, 232
Lucas, George, 189

Luigi, 309

Machine learning

Deployment, 303

Matrix
Power iteration, 149, 361
Sparse, 144
Melted dataset, 20
Milgram, Stanley, 137

Natural language, 57
Arabic, 77
Chinese, 77, 88, 96
Devanagari, 77
English, 58, 96
Greek, 88
Japanese, 58, 77, 88, 96
Nahuatl, 58
Processing, 58
Spanish, 58, 88, 96

Natural language processing
Bag of words, 114
Bigram, 114
Chunking, 106
LDA, 115
Lemma, 99
Lemmatisation, 99
N-gram, 114
Named entities, 105
Stemming, 99
Tokenisation, 96
Tweet, 100
Unigram, 114
Word tagging, 102

Network, see Graph
k-component, 153
Centralisation, 149
Clique, 150

Cluster, 150

Community detection, 152

Density, 150

Local clustering coefficient,
150

Louvain algorithm, 153

Degeneracy, 156
Resolution limit, 155
Modularity, 154
Properties, 149
NetworkX, 156

add_edge, 157

add_node, 157

add_nodes_from, 157

add_weighted_edges_from,
157

adj_matrix, 160

adjacency, 161

all_pairs_shortest_path_length,
184

average_clustering, 181

betweenness_centrality, 173

clustering, 180

contracted_nodes, 201

degree, 166, 168

degree_centrality, 171

draw_network, 158, 164

edges, 158

Eigenvector centrality, 176

girvan_newman, 184

Graph, 157

k_components, 182

Louvain algorithm, 187

nodes, 158

pagerank, 178

to_edgelist, 161

382 J. ROGEL-SALAZAR

todense, 160
Neural network, 207, 214, 228

Activation function, 218

Architecture, 215

Backpropagation, 223

Backpropagation through
time, 284

Convolutional, 211, 263

Deep learning, 216, 254

Epoch, 242

Feedforward, 216

Gated recurrent unit, 289

Generative adversarial, 212

Hidden layer, 215

Input layer, 215

Layers, 215

Learning rate, 237

LSTM, 212, 281, 286, 290

Memory, 279

Nodes, 215

Output layer, 215

Overfitting, 217

Padding, 265

Recurrent, 212, 279

Truncated backpropagation

through time, 285
Underfitting, 217
Weight, 215

Neuroscience, 208
NLTK, 97
NP-complete, 152
numpy

randn, 19

Obama, Barack, 103

Online machine learning, 241

Open data, 60

Pain au chocolat, 57
Pandas, 8
fillna, 29
groupby, 12
resample, 13
to_datetime, 10
truncate, 12
Index
set, 10
sort, 10
Patterns
Regular expressions, 79
Perceptron, 209, 216
Periodogram analysis, 5
Philosopher, 140
POS tagging, 103
Python
chardet, 94

Iterable, 107

Random walk, 53
Regex, 77
Regular expressions, 77
compile, 81
match, 81
search, 81
Cursive Re, 87

re, 77
Reinforcement learning, 212

Sagan, Carl, 139

Scikit-learn

make_moons, 244
Scipy, 41, 184
Semi-structured data, 60
Sheep-Aircraft, 57
Simplex, 111
Six degrees of separation, 137
SNA, see Social network analysis
Social network analysis, 131, 132
Star Wars network, 189
Examples, 162
GML format, 163
Zachary’s Karate Club, 162
Softmax function, 363
Strings
decode, 91
encode, 91
Strogatz, Steve, 139
Sun
Auroras, 5
Sun activity, 5
Sunspots, 5
Supervised learning, 207
Support vector machine, 211

Swift, 304

TensorFlow, 256

Testing set, 115

The Odyssey, 256

Tick data, 25

Time series
Stationary, 39

Time series, 1, 2
Analysis, 1
Autocorrelation, 48

Autoregression, 48

ADVANCED DATA SCIENCE AND ANALYTICS WITH PYTHON

Decomposition, 45

Examples, 4

Exponential smoothing, 37

Lagged values, 48

Manipulation, 18, 21

Modelling, 31

Moving averages, 36

Offset alias, 14

OHLC (open high low close),
22

Pandas, 7

Parsing, 25

Partial autocorrelation, 48

resample, 26

Seasonal stationary series., 39
Seasonality, 6, 39

Stationarity, 42

Stationary, 39

Structure, 6

Trend, 6

Topic modelling, 109
Training set, 115
Transfer learning, 212

Twitter, 100, 140

Tweet, 100

Type

bytearray, 89
bytes, 89

str, 89

Unicode, 89
Uniform distribution, 32
UTE, 89

UTF-16, 89

UTF-8, 89

Viking café, 78

Watts, Duncan, 139
Web scraping, 64

White noise, 32

383

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	1: No Time to Lose: Time Series Analysis
	1.1 Time Series
	1.2 One at a Time: Some Examples
	1.3 Bearing with Time: Pandas Series
	1.3.1 Pandas Time Series in Action
	1.3.2 Time Series Data Manipulation

	1.4 Modelling Time Series Data
	1.4.1 Regression. . . (Not) a Good Idea?
	1.4.2 Moving Averages and Exponential Smoothing
	1.4.3 Stationarity and Seasonality
	1.4.4 Determining Stationarity
	1.4.5 Autoregression to the Rescue

	1.5 Autoregressive Models
	1.6 Summary

	2: Speaking Naturally: Text and Natural Language Processing
	2.1 Pages and Pages: Accessing Data from the Web
	2.1.1 Beautiful Soup in Action

	2.2 Make Mine a Regular: Regular Expressions
	2.2.1 Regular Expression Patterns

	2.3 Processing Text with Unicode
	2.4 Tokenising Text
	2.5 Word Tagging
	2.6 What Are You Talking About?: Topic Modelling
	2.6.1 Latent Dirichlet Allocation
	2.6.2 LDA in Action

	2.7 Summary

	3: Getting Social: Graph Theory and Social Network Analysis
	3.1 Socialising Among Friends and Foes
	3.2 Let’s Make a Connection: Graphs and Networks
	3.2.1 Taking the Measure: Degree, Centrality and More
	3.2.2 Connecting the Dots: Network Properties

	3.3 Social Networks with Python: NetworkX
	3.3.1 NetworkX: A Quick Intro

	3.4 Social Network Analysis in Action
	3.4.1 Karate Kids: Conflict and Fission in a Network
	3.4.2 In a Galaxy Far, Far Away: Central Characters in a Network

	3.5 Summary

	4: Thinking Deeply: Neural Networks and Deep Learning
	4.1 A Trip Down Memory Lane
	4.2 No-Brainer: What Are Neural Networks?
	4.2.1 Neural Network Architecture: Layers and Nodes
	4.2.2 Firing Away: Neurons, Activate!
	4.2.3 Going Forwards and Backwards

	4.3 Neural Networks: From the Ground up
	4.3.1 Going Forwards
	4.3.2 Learning the Parameters
	4.3.3 Backpropagation and Gradient Descent
	4.3.4 Neural Network: A First Implementation

	4.4 Neural Networks and Deep Learning
	4.4.1 Convolutional Neural Networks
	4.4.2 Convolutional Neural Networks in Action
	4.4.3 Recurrent Neural Networks
	4.4.4 Long Short-Term Memory
	4.4.5 Long Short-Term Memory Networks in Action

	4.5 Summary

	5: Here Is One I Made Earlier: Machine Learning Deployment
	5.1 The Devil in the Detail: Data Products
	5.2 Apples and Snakes: Core ML + Python
	5.3 Machine Learning at the Core: Apps and ML
	5.3.1 Environment Creation
	5.3.2 Eeny, Meeny, Miny, Moe: Model Selection
	5.3.3 Location, Location, Location: Exploring the Data
	5.3.4 Modelling and Core ML: A Crucial Step
	5.3.5 Model Properties in Core ML

	5.4 Surprise and Delight: Build an iOS App
	5.4.1 New Project: Xcode
	5.4.2 Push My Buttons: Adding Functionality
	5.4.3 Being Picky: The Picker View
	5.4.4 Model Behaviour: Core ML + SwiftUI

	5.5 Summary

	A: Information Criteria
	B: Power Iteration
	C: The Softmax Function and Its Derivative
	C.1 Numerical Stability

	D: The Derivative of the Cross-Entropy Loss Function
	Bibliography
	Index

